



*Innovation in Water Electrolysis™*

Alan Tan  
2022





# NextHydrogen



Next Hydrogen was founded in 2007 by pioneers in water electrolysis with combined 60+ years experience in designing hydrogen generation systems



Water electrolysis is the major means to generate green hydrogen and Next Hydrogen offers a purpose built electrolyser to integrate with renewable energy sources



Significant advancement in electrolyzer design architecture and validated by:



Next Hydrogen targets applications requiring on-site and large-scale green hydrogen generation in the industrial or transportation sectors and will seek to form partnerships with leading industrial and renewable companies globally

**39 patents**  
on both alkaline and  
PEM designs  
issued globally

**15+ years**  
of IP development to  
advance cell design  
architecture

**\$60+MM**  
NHC is fully capitalized  
heading into 2022

# World class hydrogen expertise



## Raveel Afzaal

10+ years capital markets experience as an equity research analyst and venture capitalist, former lead of Canadian Sustainability & Special Situations verticals for Canaccord Genuity



**President & CEO,**  
CFA, B.Math, B.Econ.



## Kasia Malz

10+ years financial leadership experience, former CFO of Titanium Transportation Group, growing the business from \$40M to \$200M in revenue



**Chief Financial Officer,**  
CPA, CA, CPA(IL), MAcc



## Matthew Fairlie

20+ years in hydrogen industry, former CTO and Executive VP at Stuart Energy, served as Vice Chair of the US National Hydrogen Association and Chair of the Hydrogen Business Council of Canada



**Vice Chairman,**  
MSc, DBA



## Michael Stemp

20+ years of designing and developing hydrogen systems, former Director of Advanced Engineering for Stuart Energy



## Jim Hinatsu

25+ years commercial experiences with hydrogen and electrochemical systems, including senior roles at Hydrogenics and Stuart Energy



**Chief Operating Officer,** PhD



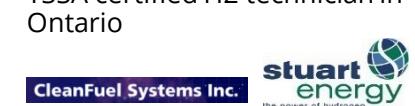
**BD Exec Advisor,**  
P.Eng, MBA

## Robert McGillivray

20+ years experience in cleantech commercialization including 10 years in hydrogen product sales, marketing, business and corporate development



**VP Manufacturing,**  
MS

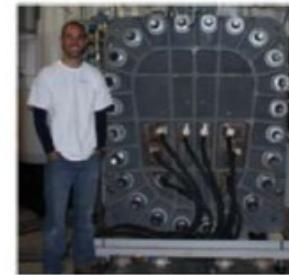
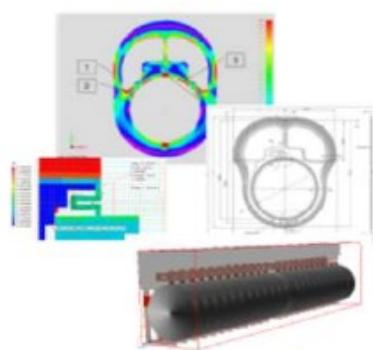



## Jim Franchville

25 + years experience in manufacturing, operations, supply chain, quality, and process improvement across several industries



**VP Operations**


## Shane Day

25 + years experience managing the installation and integration of > 60 H2 systems and > 200 fuel cells in multiple applications, first TSSA certified H2 technician in Ontario



# NHC Electrolyser Development Path



NH15 15 Nm<sup>3</sup>/h



NH60 60 Nm<sup>3</sup>/h



NH300 300 Nm<sup>3</sup>/h



2008 to 2009

2010 to 2013

2014 to 2018

2018 to 2022

2022 to 2025

Prototype

AECL

Pilot



Demo



Large-Scale Green H<sub>2</sub>  
(3-4x Scale-up)

# Commercial Testing and Validation



## Successful Pilot Project

*"The team successfully demonstrated the continuous operation of the cell with the required quality of hydrogen stream from the electrolyser in a liquid phase catalytic exchange system." - AECL MD&A*

## One of the Largest On-site H<sub>2</sub> Generation Project for Materials Handling Applications Globally

The first "green hydrogen system" – hydrogen powered fork lifts and electrolysis fuel production using Next Hydrogen electrolyzers

- Canadian Tire commissioned an NH60 (0.4 MW) unit for a pilot project at their Brampton, Ontario distribution centre
- Subsequently ordered 2 NH300 (1.8 MW) units since the first demonstration unit for their Bolton, Ontario facility. Total hydrogen production capacity of 1.5 tonnes/day



Bolton, Ontario

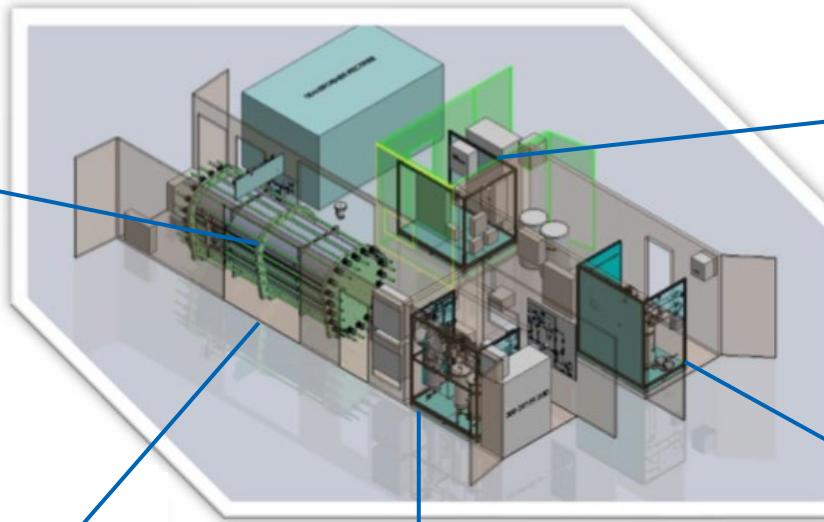
## Hyundai and Kia Partnership

Hyundai Motor Company, Kia Corporation and Next Hydrogen Corporation recently signed an MOU to jointly develop an alkaline water electrolysis system and its related stack for economically generating green hydrogen and exploring new business opportunities and technological applications.

*"We are pleased to partner with Next Hydrogen specializing in state-of-the-art water electrolysis technology. This partnership is another leap forward for our hydrogen business and will be our first step into the alkaline water electrolysis market," said Jae-Hyuk Oh, Vice President and Head of Energy Business Development Group at Hyundai Motor Group. "We believe our technology will be an excellent match for Next Hydrogen's technology, and this synergy will help achieve our goal to provide our customers with cost-effective green hydrogen."*



# Product Offerings




## NH-300 Hydrogen Generation System Schematic



**Electrolyser Module**

Patented cellular architecture removes fluid-gas flow restrictions which limit traditional electrolyser performance



Electrical and Controls Container



Electrolyser Container



Hydrogen Container



Oxygen and Feedwater Container



Open architecture with the best commercially available cell components



Compact units, pre-assembled and ready to drop in at sites

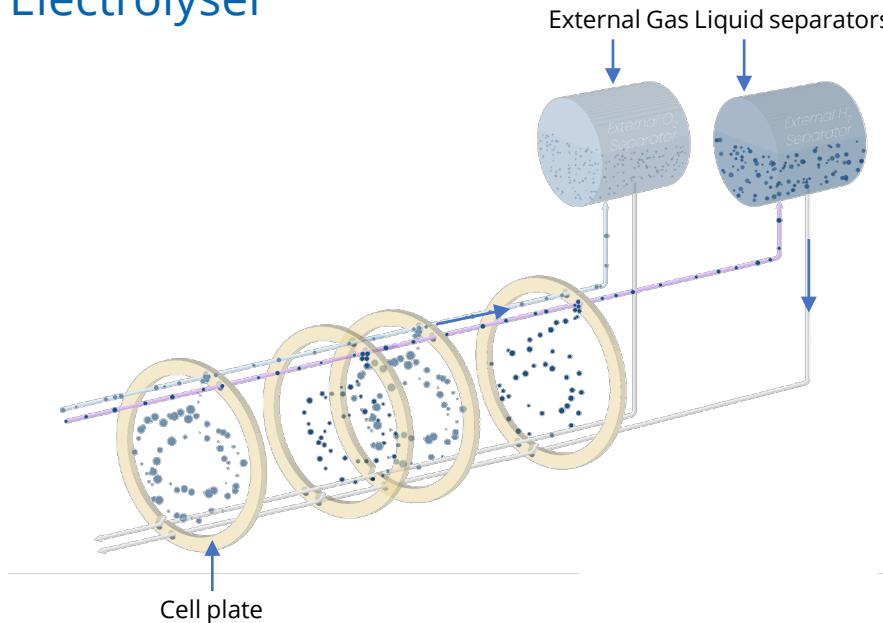


Current alkaline electrolyser product line with significant product roll-out planned:

| NH-100 | NH-300 |
|--------|--------|
|--------|--------|

**Capacity**  
(kg/day)

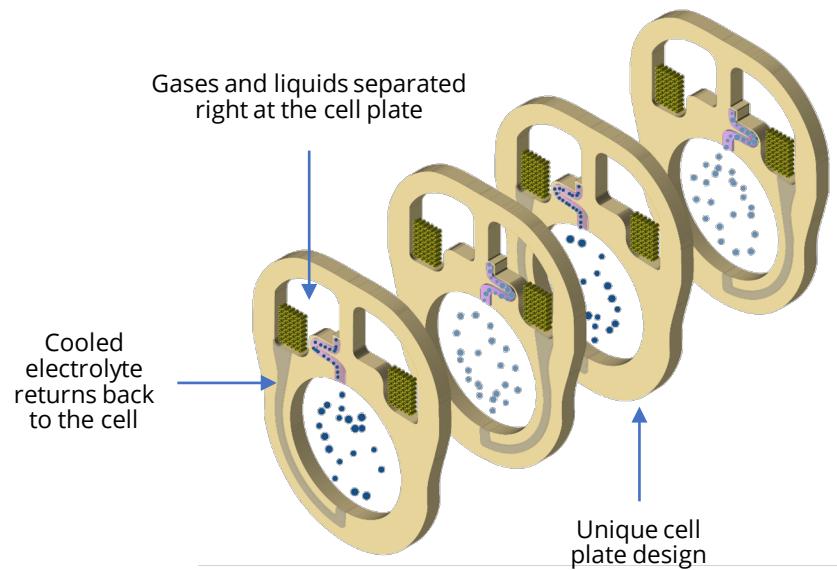
215


645

# Significant Advancement in Electrolyser Design



## Conventional Electrolyser Design


Electrolyte and gases are required to flow through pipes to external separators limit the performance of electrolyzers



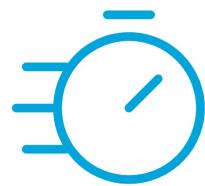
- ✖ External gas-liquid separators
- ✖ Potential for flow restrictions leading to uneven gas-liquid and temperature distributions at higher current densities and multi-MW scale
- ✖ Low dynamic response given distance from gas-liquid separators

## NextHydrogen - Electrolyser Design

All electrolyte and gas-liquid separation occurs at each cell plate, removing limiting design features of conventional electrolyzers



- ✓ Internal gas-liquid separators in each half cell
- ✓ Decentralized gas-liquid separator ensures no fluid and gas flow restrictions across the system for higher current densities and multi-MW scale
- ✓ Superior dynamic response as gases and liquids are separated right above the cell plate


# Cost Advantages

## Higher Current Density



**Up to 2.5x current density**, leading to **2.5x more hydrogen produced** while using the same commercially proven raw materials as other commercial systems

## Superior Dynamic Response



Superior dynamic response enables Next Hydrogen's electrolyzers to **capture fluctuations in energy at 5% per second** compared to conventional alkaline systems with capabilities of up to 5% per minute

## Scalable Design



With approximately the same footprint, Next Hydrogen's electrolyzers are able to **scale up its power by a factor of 300%**

**Next Hydrogen's electrolyzers can produce more hydrogen per capex dollar spent compared to other leading Alkaline systems**

# PEM performance at Alkaline cost and operating life



VALIDATED WITH:



## WIDER OPERATING RANGE

- 15%~100%; easier and faster switch on/off

## PLASTICS VS. METAL PLATES

- Plastics is cheaper, better to handle corrosion, and lighter

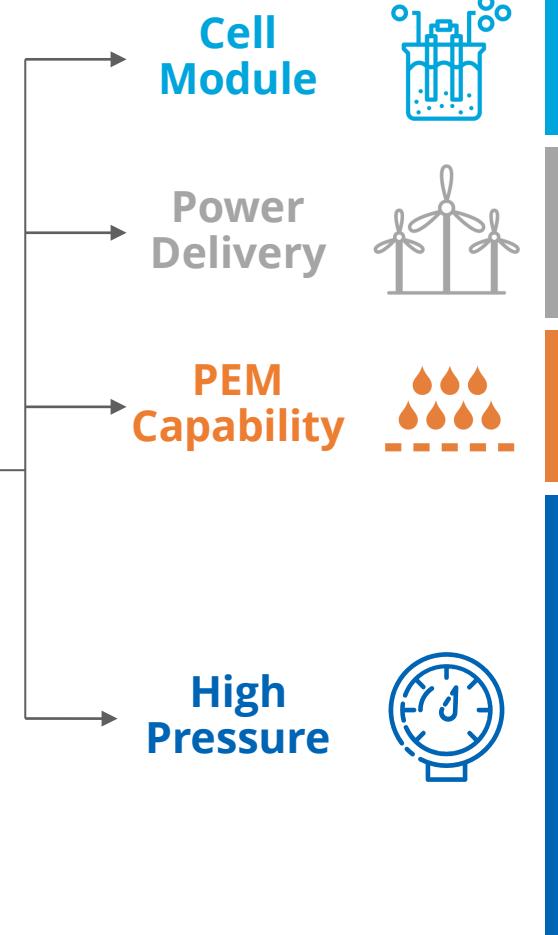
## COMPACT DESIGN AND SMALLER FOOTPRINT

- Largest containerized Alkali Electrolyzer

## ENHANCED SAFETY

- Reduced gas fractions at high operating points; minimize electrolyte outside module

## OPEN ARCHITECTURE


- Our patented electrolyser design can use alkaline or PEM cells

# Patent Portfolio for Green Hydrogen



## NextHydrogen

- 39 Patents
- 21 European Registrations
- 3 Pending Applications



|                                                                               | Priority       | Filing Location <sup>(1)(2)</sup>       |
|-------------------------------------------------------------------------------|----------------|-----------------------------------------|
| Electrolyser Module                                                           | July 2008      | US (3), PCT, CA, EP, CN, IN             |
| ▪ Core water electrolyser module design                                       |                |                                         |
| Power Dispatch System for Electrolytic Production of Hydrogen from Wind Power | October 2008   | US (3), PCT, CA (2), EP (2), CN, IN (2) |
| ▪ Connection of water electrolyzers to wind farms                             |                |                                         |
| Polymer Electrolyte Membrane Water Electrolyser Cell Module                   | August 2009    | US (2), PCT, CA (2), EP, CN, IN (2)     |
| ▪ PEM water electrolyser module design                                        |                |                                         |
| Externally-Reinforced Electrolyser Module                                     | September 2012 | US, PCT, CA, EP, CN, IN                 |
| ▪ High pressure water electrolyser design                                     |                |                                         |
| Internally-Reinforced Electrolyser Module                                     | September 2012 | US, PCT, CA, EP, CN, IN                 |
| ▪ High pressure water electrolyser design                                     |                |                                         |
| End Pressure Plate for Electrolyser                                           | March 2013     | US (2), PCT, CA, EP, CN, IN             |
| ▪ End pressure plates for electrolyser modules and stacks                     |                |                                         |

1. Inclusive of patents and registrations in different stages (issued and pending).

2. US – United States; CA – Canada; EP – Europe; CN – China; IN – India; PCT – Patent Cooperation Treaty.





# Objectives driving our next generation technology



## 1. Decarbonize

Turning green electricity into green hydrogen to support on-demand applications

## 2. Minimize equipment cost

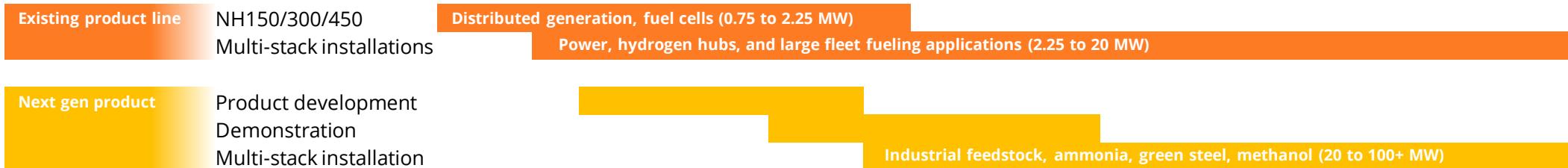
Reducing material usage, improving manufacturability

## 3. Lower cost of hydrogen

Scale-up and electrolysis cell performance improvement

## Product Roadmap: *Achieving large-scale green hydrogen at a competitive cost*

2022


2023

2024

2025

2026

2027





# Centre of Excellence – 40MW's of Manufacturing capacity





# Thank you

Alan Tan, Ph.D., MBA  
Vice President, Business Development  
[atan@nexhydrogen.com](mailto:atan@nexhydrogen.com)