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Renewable energy transition: Energy storage?

= Transition to renewables underway
- Renewable portfolio standards: 32 states?
+ Need seasonal energy storage needed for high penetrations?#: Renewable NH,
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[1] EIA (2021). Renewable energy explained - Portfolio standards. [3] Sanchez et al. (2021). Appl. Energy 293, 116956.

[2] Rouwenhurst et al. (2019). Renew. Sust. Energ. Rev. 114, 109339. [4] Cesaro et al. (2021). Appl. Energy 282, 116009.



Renewable H, and NH; as energy storage

Our previous work: H, and NH; for small-scale 100% renewable energy storage
= Lowest cost systems use both in combination: Efficiency vs. storage cost?!
= Seasonal storage for competitive renewable CHP in remote locations?
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This work: Energy transition with renewable H, and NH,
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What role does renewable NH; play in energy transition?



Combined planning and scheduling model for energy transition

Plan installation of renewable generation and storage in each investment period

[Capacity: x(k=1) ]—> o —b[ x(k) Hx(k + 1)]—> o —>[x(k = K)]




Combined planning and scheduling model for energy transition

Plan installation of renewable generation and storage in each investment period
Schedule operation of new and previously installed renewable generation and storage

[Capacity: x(k=1) ]—>

Production rate: p.(t = 1, k)
Storage inventory: £,(t = 1, k)

Account for renewable intermittency without oversizing?!?

[1] Palys et al. (2020). Comput. Chem. Eng. 136, 106785.
[2] Palys et al. (2021). Optim. Contr. Appl. Meth. DOI:10.1002/oca.2793.




Combined planning and scheduling model for energy transition

Minimize: Net present cost

Decisions
= Planning - Made once for each investment period
= Scheduling - Made for each operating period in each investment period

Constraints
= Installed capacity continuity between investment periods
= Renewable energy standards
= Power generation + storage discharge > Power demand + storage charge
= Storage inventory balances
= Production rate/inventory bounds _ ,
: . Relates planning and scheduling
= Production ramping bounds

Mixed integer linear programming (MILP) model




Energy transition case study: Southern California

= Planning from 2025 to 2040
« 5-year investment periods

= 500 MW in 2025
= 160 MW, 340 MW existing wind and PV?
* 7% and 14% energy supply
= $35/MWh conventional generation in 20252

= Scheduling: Wind and PV capacity factors, demand data
« Synthesized from 10 cities
« Open access34
« Demand: 50% commercial, 50% residential

[1] U.S. EIA (2020). State electricity profiles. [3] NREL (2019). NSRDB, 1991-2005 Update: Typical Meteorological Year 3.
[2] U.S. EIA (2021). Annual energy outlook 2021. [4] EERE (2019). OpenEl Commerical and Residential Hourly Load Profiles for TMY3.




Energy transition case study: Southern California

Renewable portfolio
standards
40% in 2025
4% increase per year

Demand growth
1% per year?!

Fuel cost increase
2% per year?!

[1] U.S. EIA (2021). Annual energy outlook 2021.
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Southern California optimal economics
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Southern California energy systems in 2025 and 2030
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Southern California energy system in 2035
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Southern California energy system in 2040
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Southern California energy storage schedules in 2040
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Sector coupling with renewable NH,
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= Fertilizer to agriculture sector
= Hydrogen carrier for fuel cell vehicle sector




Southern California sector coupling economics
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Conclusions

Conceptual case study with publicly available data
= Renewable NH, for seasonal storage grid-scale energy transition
= Sector coupling accelerates renewable NH, adoption
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Conclusions

Conceptual case study with publicly available data
= Renewable NH, for seasonal storage grid-scale energy transition
= Sector coupling accelerates renewable NH, adoption
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Combined investment planning-scheduling model for renewable energy transition
= Can be easily customized: Demands, technologies, policy
= Want to analyze real scenarios!
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Literature review: Renewable NH; and H, as energy storage

Our previous work: Renewable H, and NH; for small-scale energy storage
= Both in combination optimal for islanded storage systems @ 1-10 MW scalel
= NH; enables economical 100% renewable CHP in remote locations?

Large-scale renewable NH; for energy

=  Competitive by 2040 in systems with high renewable penetration34
 Fuel for combustion turbines

= Best chemical storage medium for durations > 3 months at state scale®

= Best seasonal energy storage at continental scale in 20506

[1] Palys et al. (2020). Comput. Chem. Eng. 136, 106785. [4] Cesaro et al. (2021). Appl. Energy 282, 116009.
[2] Palys et al. (2021). Optim. Contr. Appl. Meth. DOI:10.1002/oca.2793. [5] Tso et al. (2019). Comput. Aided Chem. Eng. 47, 1-6.
[3] Sdnchez et al. (2021). Appl. Energy 293, 116956. [6] IkAheimo et al. (2018). Int. J. Hydrogen Energy 43(36), 17295-17308.




Generation and storage cost and performance projections

Capital investment (MM$) Operating cost - % of capital Energy Production/storage
2025 2030 2035 2040 2025 \ 2030 2035 2040 efficiency lower bound
Wind turbines (MW) 1.22 1.15 1.11 1.08 1.38 1.51 1.54 1.57 - -
PV arrays (MW) 0.46 0.38 0.34 0.31 1.38 1.51 1.54 1.57 - -
Electrolysis (MW) 0.7 0.53 0.46 0.42 1.50 1.50 1.50 1.50 75% 5%
Air separation (kt/y) 0.18 0.17 0.16 0.16 3.50 3.50 3.50 3.50 0.12 MWh/t 50%
NH; synthesis (kt/y) 0.38 0.36 0.34 0.32 3.50 3.50 3.50 3.50 0.48 MWh/t 50%
H, fuel cell (MW) 1 0.79 0.7 0.63 2.00 2.00 2.00 2.00 55% 5%
NH; CCGT (MW) 0.8 0.79 0.78 0.77 2.50 2.50 2.50 2.50 60% 20%
Battery power inteface (MW) 0.25 0.19 0.15 0.12 1.60 2.00 2.40 2.80 - 20%
Battery storage (MWh) 0.39 0.29 0.24 0.2 1.88 2.00 2.13 0.25 90% 20%
H, Storage (t) 0.96 0.87 0.74 0.62 0 0 0 0 - 1%
N, Storage (t) 5.0E-03 5.0E-03 5.0E-03 5.0E-03 0 0 0 0 - 1%

NH, Storage (t) /.0E-04 7.0E-04 /.0E-04 7.0E-04 0 0 0 0 = 0%




Southern California power balance schedule in 2040
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