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Stranded Wind Resources

National Renewable Energy Laboratory, United States Department of Energy. Wind Resource Map (2014). 3
http://www.nrel.gov/gis/wind.html



Ammonia Demand for Fertilizer
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National Agricultural Statistics Service, United States Department of Agriculture. Planted Corn Acreage by County (2014).
http://www.nass.usda.gov/Charts_and_Maps/Crops_County/#cr



The Haber-Bosch Process

= ~1% global energy consumption, carbon emissions
= Centralized massive production - transportation
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N, from Air, H, from Water

O:

Cussler, E. L. Diffusion Mass Transfer in Fluid Systems.
(Cambridge University Press).
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Source: http://protononsite.com/products/hydrogen-generator/

* Nitrogen via membrane or PSA separation
* Hydrogen via electrolysis of water



U of MN Renewable Hydrogen and Ammonia Pilot Plant
Hydrogen, Nitrogen, and Ammonia Production Buildings
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Ammonia Product Storage :
12.5 kV to 480 V Transformer (3000 Gallons) Ammonia Pump and Loadout




Ammonia: Feeding the World,
New Fuel and H carrier

= Backbone of nitrogen fertilizer: Feeds half of the
global population

= Energy-dense, inexpensive H carrier and fuel
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Ammonia-Based Sustainable
Energy and Agriculture

At a farm or co-op scale, use renewable energy to:

1. Make ammonia as fertilizer and fuel (grain drying, tractors, ...)
2. Meet local electrical power demands
3. Export power to grid
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Early analysis (Cussler, Reese, Tiffany)
Small-scale NH; Costs At Least 2X
Conventional at Distributed Scale
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Benchmark learning - Need Cheaper Small-
Scale Ammonia Synthesis

Catalysis

High temperature/pressure

Haber-Bosch Process
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Source: Malmali et al., 2018, ACS

retu N ed tO Fea Ctor Sustainable Chem. Eng., 6, 6536-6546.

Opportunity?
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II. Absorbent Enhanced Ammonia Production:
Replace Condensation with Absorption

= Lower exit ammonia partial pressure
= Higher temperature (less heat exchange, no chilling)

= More complete separation might permit lower
pressure synthesis loop — safety mitigation savings

Haber-Bosch Process
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Absorption Uptake/Release via Solid/Gas Reaction
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Kale Ojha Biswas Militti McCormick Schott Dauenhauer Cussler,
ACS Applied Energy Materials 2020 3 (3), 2576-2584. 10.1021/acsaem.9b02278
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MgCl, Application |Researchers| Institute Description Year Reference
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Absorption Design Can Increase Overall Productivity cf. Condensation,
Even with Lower Pressure Reactor
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Malmali et al., ACS Sustainable Chem. Eng. 2018, 6, 827—-834




Challenge: Stable Absorbents?

10 g MgCl, L
T=150C
P=1 bar (N,:NH;=5:1) <
OO
S 0.5

AOODQPDOoOD

MgCl, Cycle 1

MgCl, - Cycle 2
MgCl, - Cycle 3
MgCl, - Cycle 4
MgCl, - Cycle 5
MgCl, - Cycle 6
MgBr,(OH)_ - Cycle 1
MgBr,(OH), - Cycle 2

Time (min)

Wagner, K., Malmali, M., Smith, C., McCormick, A., Cussler, E. L., Zhu, M.Seaton, N. C. A. (2017) AIChE J., 63 (7), 3058—-3068.
Malmali, M., Reese, M., McCormick, A., & Cussler, E. L. (2017) ACS Sustainable Chemistry & Engineering, Accepted.
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Absorbent Structure Changes as
Ammonia is Absorbed

Christensen et al. J. Am. Chem. Soc., 2008, 130, 8660.

OMg OCl °¢NH,

Calculated structures for MgCl,(NH;), found by Technical University of Denmark group
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SUCCESS with Supported Sorbents:
First try: Metal Halide Supported on Alumina
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Absorbent Cycling Stabilized by Inerts

Salt Mixed with Inert Particles
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# of cycles

Kale 2020
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What do we need to learn for optimal operation?
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Kale Ojha Biswas Militti McCormick Schott Dauenhauer Cussler,
ACS Applied Energy Materials 2020 3 (3), 2576-2584.
10.1021/acsaem.9b02278



Effective
working
capacity
depends on
operating
conditions

Kale 2020

Cyclic steady state conditions
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Ammonia Partial

Pressure

Absorbent is Stable
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After “breaking in” runs,
fast scans can reveal “working capacity”
at varying uptake and release conditions

Working Capacity (molyys/molc)
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Desorption Controlled by Diffusion;
Release Time Matters
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Desorption in Ammonia Manufacture from Stranded Wind Energy,
Ojha Kale Dauenhauer McCormick Cussler, 2020.
10.1021/acssuschemeng.0c03154
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Production capacity depends on operating

(cycling) parameters —

example varying regeneration temperature
(details in Kale et al 2020)
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Scale up issues:

Insights from the lab need to be tested
on the ARPA-E prototype (ca. 1 kg/day)
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Comparison of Absorbent-Enhanced and Condenser-Based Processes Palys et al. (2019).
AIChE Annual Meeting 2019, Orlando, FL.

Absorbent-Enhanced
Condenser-Based © 800
1 E Condenser-Based
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Production Scale gOOO ton/year)
m Nitrogen Cost lectrolysis Opex

Absorbent-enhanced process: )
m Electrolysis Capex m Synthesis Opex

=  Lower capital investment (~40%)
= Higher energy consumption due to heat needed for desorption (no integration)
= Less expensive (~ 25%) synthesis at small production scales!



Upcoming developments
from Malmali (Texas Tech)



Ammonia purity with cyclic
absorption/desorption

Hrtus, Nowrin, Malmali
ACS Sustainable Chemistry &

TEXAS TECH

UNIVERSITY.
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« For each absorbent chemistry, ammonia absorption and release should be
optimized.

« Ammonia purity above 90% can be achieved with optimized absorption
temperature and sweep flow.
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