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Stranded Wind Resources

National Renewable Energy Laboratory, United States Department of Energy. Wind Resource Map (2014). 
http://www.nrel.gov/gis/wind.html
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Ammonia Demand for Fertilizer

National Agricultural Statistics Service, United States Department of Agriculture.  Planted Corn Acreage by County (2014). 
http://www.nass.usda.gov/Charts_and_Maps/Crops_County/#cr
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The Haber-Bosch Process

§ ~1% global energy consumption, carbon emissions
§ Centralized massive production - transportation  

Source: Pattabathula & Richardson, CEP, September 2016, 69-75.



N2 from Air, H2 from Water

Source:  http://protononsite.com/products/hydrogen-generator/

Cussler, E. L. Diffusion Mass Transfer in Fluid Systems. 
(Cambridge University Press). 

• Nitrogen via membrane or PSA separation
• Hydrogen via electrolysis of water
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U of MN Renewable Hydrogen and Ammonia Pilot Plant
Hydrogen Storage Tanks

Nitrogen Storage Tank

Hydrogen, Nitrogen, and Ammonia Production Buildings

12.5 kV to 480 V Transformer
Ammonia Product Storage 

(3000 Gallons)

Safety Equipment & Shower Building

Ammonia Pump and Loadout
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Ammonia: Feeding the World, 
New Fuel and H carrier

§ Backbone of nitrogen fertilizer: Feeds half of the 
global population

§ Energy-dense, inexpensive H carrier and fuel

Source: Ritchie, Our World in Data: 
https://ourworldindata.org/how-many-people-does-synthetic-

fertilizer-feed#note-4; 
Erisman et al., 2008, Nat. Geoscience, 1 (10), 636-

639. 



Daoutidis, 2019

Ammonia-Based Sustainable 
Energy and Agriculture

At a farm or co-op scale, use renewable energy to:
1. Make ammonia as fertilizer and fuel (grain drying, tractors, …)
2. Meet local electrical power demands
3. Export power to grid
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Early analysis (Cussler, Reese, Tiffany) 
Small-scale NH3 Costs At Least 2X 
Conventional at Distributed Scale
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Benchmark learning - Need Cheaper Small-
Scale Ammonia Synthesis

Catalysis

§ High temperature/pressure

§ Many efforts globally in 

academia and industry

Separation

§ Low temperature  

§ ~2-5mol% ammonia 

returned to reactor

§ Opportunity?

Source: Malmali et al., 2018, ACS 
Sustainable Chem. Eng., 6, 6536-6546.

Haber-Bosch Process

12



13

§ Lower exit ammonia partial pressure
§ Higher temperature (less heat exchange, no chilling)
§ More complete separation might  permit lower 

pressure synthesis loop – safety mitigation savings

II. Absorbent Enhanced Ammonia Production:
Replace Condensation with Absorption  

Haber-Bosch Process Absorbent Enhanced Process

Source: Malmali et al., 2018, ACS Sustainable Chem. Eng., 6, 6536-6546.
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Absorption Uptake/Release via Solid/Gas Reaction

SaltVapor
(A) (B) (C)

Absorption

Desorption

Kale Ojha Biswas Militti McCormick Schott Dauenhauer Cussler,  
ACS Applied Energy Materials 2020 3 (3), 2576-2584.  10.1021/acsaem.9b02278
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MgCl2 Application Researchers Institute Description Year Reference

Chemical Heat Pump Saito 
et al.

University of 
Tokyo

Absorption of ammonia into 
alkaline earth metal halides 1994 Jpn. Kokai Tokkyo 

Koho JP 06136357

Low pressure ammonia 
synthesis & storage Aika

et al.
Tokyo Institute 
of Technology

Absorption isotherms of halide 
mixtures and phases

2002 Chem. Let. 31, 798-
799

2004
Procedure. Bull. 

Chem. Soc. Jpn. 77, 
123-131.

2004 Ind. Eng. Chem. Res. 
43, 7484-7491

Ammonia Storage Aristov
et al.

Boreskov
Institute of 

Catalysis

Alkaline earth metal confined in 
alumina 2005 React. Kinet. Catal. 

Lett. 1, 183-188

Hydrogen Storage as 
Ammonia 

Christensen, 
Vegge, 

Norskov,
Johannessen

et al.

Technical 
University of 

Denmark

Opportunities for hydrogen storage 2005 J. Mater. Chem 15, 
4106-4108

Absorption/desorption difficulties 2006 J Am. Chem. Soc. 128, 
16-17

DFT studies for crystal structure 2010 Energy Environ. Sci. 3, 
448-456

Desorption and 
characterization

Owen-Jones,
Royce, David, 

et al
Oxford Frontiers in characterization and 

understanding
2013
-14

Chem Phys, 427, 38-
43

2014 NH3FC

Distributed/facilitated 
Ammonia production 

Cussler, 
McCormick 

et al.

University of 
Minnesota

Absorption of ammonia at Haber 
process conditions 2012 AIChEJ 58, 3526-3552

Absorbent enhanced ammonia
production 2015 AIChEJ 61, 1364-1371

Ammonia Storage
Fuel Cell

Van Hassel 
et al.

United 
Technologies

Alkaline earth metal confined in 
activated carbon 2015 Sep. Purif. Technol. 

142, 215-226
16
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Absorption Design Can Increase Overall Productivity cf. Condensation,
Even with Lower Pressure Reactor 

Malmali et al., ACS Sustainable Chem. Eng. 2018, 6, 827−834

CIRCULATING BATCH

FED CIRCULATING BATCH



Challenge: Stable Absorbents?
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Wagner, K., Malmali, M., Smith, C., McCormick, A., Cussler, E. L., Zhu, M.Seaton, N. C. A. (2017) AIChE J., 63 (7), 3058–3068.
Malmali, M., Reese, M., McCormick, A., & Cussler, E. L. (2017) ACS Sustainable Chemistry & Engineering, Accepted.

10 g MgCl2
T=150 C
P=1 bar (N2:NH3 = 5:1 )



Absorbent Structure Changes as 
Ammonia is Absorbed

Christensen et al. J. Am. Chem. Soc., 2008, 130, 8660.
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Calculated structures for  MgCl2(NH3)x found by Technical University of Denmark group
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SUCCESS with Supported Sorbents: 
First try: Metal Halide Supported on Alumina



Absorbent Cycling Stabilized by Inerts

# of cycles

Salt Mixed with Inert Particles

Pure Salt Particles

Desorption
Absorption

Desorption
Absorption

Particle Agglomeration

Kale 2020
21



Cycling a 
small 
automated 
column in 
the lab 
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What do we need to learn for optimal operation?

Kale Ojha Biswas Militti McCormick Schott Dauenhauer Cussler,  
ACS Applied Energy Materials 2020 3 (3), 2576-2584.  
10.1021/acsaem.9b02278



Effective 
working 
capacity 
depends on 
operating 
conditions
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Cyclic steady state conditions

Kale 2020



Absorbent is Stable
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After “breaking in” runs, 
fast scans can reveal “working capacity”
at varying uptake and release conditions

Working Capacity (molNH3/molSalt)

Absorption

Desorption

(A) (B) 

Ab
so
rp
tio

n

De
so
rp
tio

n

Max ammonia partial 
pressure ca. 1.5 bar
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Desorption Controlled by Diffusion;
Release Time Matters
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Desorption in Ammonia Manufacture from Stranded Wind Energy, 
Ojha Kale Dauenhauer McCormick Cussler, 2020. 
10.1021/acssuschemeng.0c03154
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Production capacity depends on operating 
(cycling) parameters –
example varying regeneration temperature
(details in Kale et al 2020)

Cool

Warm

Hot

Kale 2020
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Scale up issues:
Insights from the lab need to be tested 
on the ARPA-E prototype (ca. 1 kg/day)

28
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Comparison of Absorbent-Enhanced and Condenser-Based Processes Palys et al. (2019). 
AIChE Annual Meeting 2019, Orlando, FL.

§ Lower pressure
§ Hotter separation

Absorbent-enhanced process:
§ Lower capital investment (~40%)
§ Higher energy consumption due to heat needed for desorption (no integration)
§ Less expensive (~ 25%) synthesis at small production scales!

Absorbent-Enhanced
Condenser-Based

Absorbent-Enhanced
Condenser-Based
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Upcoming developments 
from Malmali (Texas Tech)



Ammonia purity with cyclic 
absorption/desorption
Hrtus, Nowrin, Malmali

ACS Sustainable Chemistry & 
Engineering Under Review

• For each absorbent chemistry, ammonia absorption and release should be 
optimized.

• Ammonia purity above 90% can be achieved with optimized absorption 
temperature and sweep flow.
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