

NH₃ – The Optimal Alternative Fuel

2017 AIChE Annual Meeting

NH3 Energy+ Topical Conference

November 1-2, 2017

Minneapolis, Minnesota

Norm Olson

President - NH3 Fuel Association

NH_3 – Optimal Fuel, Versatile Chemical

Fuel

Energy
Storage

Fertilizer
Refrigerant

NH₃ FA and AIChE Meeting

Become a member of the NH₃ FA and attend the AIChE Annual Meeting at a significant discount (see details at link below).

<https://nh3fuelassociation.org/join-us/>

AIChE 2017 Annual Meeting. October 29-November 3. Minneapolis, MN

NH₃ Energy+ Topical Conference. 40 presentations!

Recent Developments

Netherlands Conference (~150 attendees) - Europe's First! Shell, Yara, Ammonia Casale, IEA, Siemens, Proton Ventures, etc. 2017

Yara Announces Solar PV to NH₃ project in Australia

Japan Program 2015-2018

Siemens wind to NH₃ project in Great Britain 2016-2017 (UMM 2008)

IEA - white paper 2017

Ammonia Casale - 10 tpd unit announced 2017

Australia - 1st non-U.S. NH₃ FA chapter 2017

ARPA-E DOE - 13 NH₃ fuel related projects 2017

AIChE - 40 presentations 2017

ACS - first ever NH₃ fuel session in 2017

Hydrofuel - Greg Vezina, 1981

Global NH₃ Fuel Federation 2016... and many more

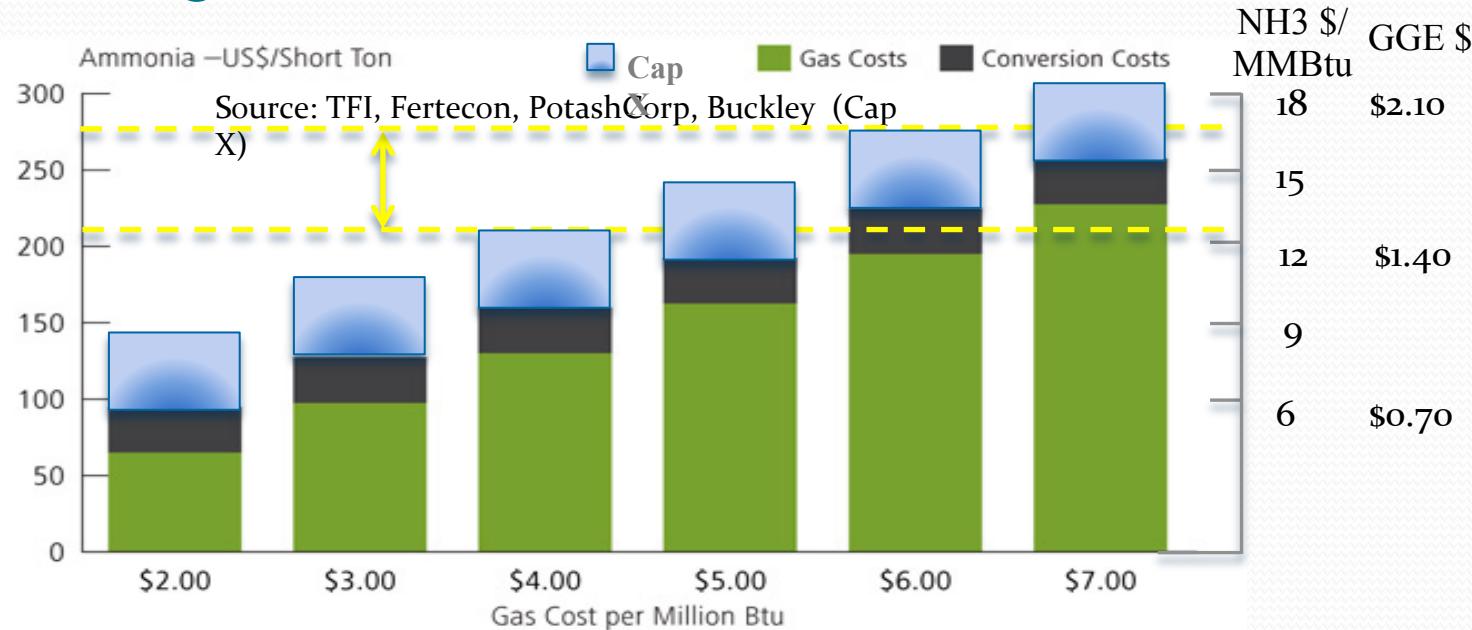
NH₃ Production vs U.S. Gasoline Use

U.S. Gasoline Consumption: 143 Billion Gallon (2015)

2016 World NH₃ Production: 180 million tonne = ~80 Billion Gallon = ~40 Billion GGE

~3.5X

NH₃ Affordability


Similar to propane infrastructure costs
2nd most transported chemical in world

Over 3000 miles of NH₃ pipeline in U.S.

800 retail outlets in Iowa alone

1.3 times more hydrogen than liquid H₂ (by volume)

NH₃ Production Costs w/ Cap X

Natural Gas Represents More Than 75 Percent of US Producers' Costs

Natural gas is the most important feedstock in ammonia production and, depending on price, makes up 70-85 percent of the US cash cost of producing ammonia. Cap X: \$1500/ton, 30 year amortization, ~\$50/ton

Gasoline @ \$3.50/gallon = \$30/MMBtu

NH3 vs Hydrogen Storage Costs

	NH3 (250 psi)	CNG (3200 psi)	H2 (10k psi)	Cryo NH3 (-28 F)	Cryo H2 (-423 F)
Application					
On-board vehicle ¹	\$700	\$1500	\$6000		
Filling station	\$68,000 ²		\$2,643,840 ³		
Large storage facility				\$20 million ⁴	\$81.6 million ³

¹Phone conversation with John Coursen, Worthington Industries, February 17, 2017. Relative ~costs ~50 liter tank: LPG/ NH3 - \$700, CNG (3200 psi) - \$1500, Hydrogen (10,000 psi) - \$6000.

²Phone conversation with Don Wallace, Trinity Containers. 18,000 gallon NH3 bullet tank - \$68,000. @80% fill capacity = 14,400 gallon x 5lbs/gallon x 0.176 lbs H2/lb NH3 /2.2 lbs/kg = 5760 kg = \$11.81/kg H2.

³“Hybrid Hydrogen Energy Storage”, Michael Penev, May 22, 2013. 10k psi H2: \$459/kg x 5760 kg = \$2,643,840. Cryo H2 Storage: \$25.5/kg x 3.2 million kg= \$81.6 million.

⁴Rentech Press Release, January 12, 2012. Chilled NH3 20,000 ton = \$20 million. 20k ton x 2000 x 0.176 /2.2 lbs/kg = 3.2 million kg. H2.

What Makes NH₃ Optimal?

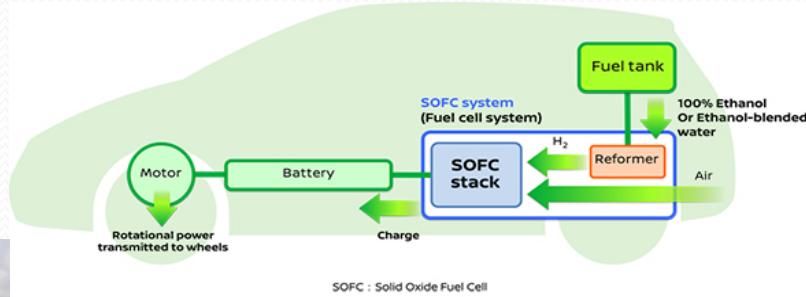
- Affordability
- Safety
- **Efficiency**
- Environmental Performance
- Sustainability
- Production Flexibility
- End-Use Flexibility
- County Building

Production Energy Efficiency

	kWh/kg H2	%LHV
NH3 via Haber-Bosch	2.26 ¹	6.8%
700 bar H2 Refueling (880 bar)	2.85 ²	8.5%
Liquid H2	10 ²	30.1%
Liquid H2 (advanced)	7 ²	21.1%

¹ "Efficient Ammonia Production" Power Point presentation, page 63. Jim Gosnell, KBR. 2005 NH3 Fuel Association Meeting. Argonne National Laboratory.

²Source H2 Data: "Energy requirements for hydrogen gas compression and liquefaction as related to vehicle storage needs." DOE Hydrogen and Fuel Cells Program Record. Record #: 9013. July 7, 2009. Air Products and Chemicals Inc. (APCI). $2.67 + 0.18 = 2.85$. Page 3 of resource above.


Efficiency in Engines

Octane, Octane, Octane

NH₃'s very high octane rating (>120) and high (tunable) resistance to detonation allow the use of extremely high compression ratios and therefore IC engines with the highest possible efficiencies.

Nissan SOFC Vehicle – 60%

Eff. ?

<https://www.youtube.com/watch?v=HF-eE8pRzMw>

What Makes NH₃ Optimal?

- Affordability
- **Safety**
- Efficiency
- Environmental Performance
- Sustainability
- Production Flexibility
- End-Use Flexibility
- County Building

Safety

Numerous design choices – As safe as it needs to be.

Pressurized storage – safe enough to meet most stringent standards

Chilled storage – safer yet: -28 F NH₃, -265F LNG, -420F H₂

Chemical storage – Too safe? Amminex, ammonium carbonate (solids)

Safety LC50

Table 1: Toxicity Classes: Hodge and Sterner Scale (CCOHS)						
Corresponding NFPA Ratings (LC50)	Toxicity Rating	Commonly Used Term	Routes of Administration			
			Oral LD50 (Single dose to rats) mg/kg	Inhalation LC50 (Exposure of rats for 4 hours) ppm	Dermal LD50 (Single application to skin of rabbits) mg/kg	Probable Lethal Dose for Man
	1	Extremely Toxic	1 or less	10 or less	5 or less	1 grain (a taste, a drop)
4 (0-100)	2	Highly Toxic	1-50	10-100	5-43	4 ml (1 tsp)
3 (100-500)	3	Moderately Toxic	50-500	100-1000	44-340	30 ml (1 fl. oz.)
2 (500-2500)	4	Slightly Toxic	500-5000	1000-10,000	350-2810	600 ml (1 pint)
1 (2500-20,000)	5	Practically Non-toxic	5000-15,000	10,000-100,000	2820-22,590	1 litre (or 1 quart)
0 (>20,000)	6	Relatively Harmless	15,000 or more	100,000	22,600 or more	1 litre (or 1 quart)

Source: Canadian Centre for Occupational Health and Safety (CCOHS). NFPA data addition by Norm Olson, NH3 FA.

LC50/4hour (ppm): NH3 - 2000; Chlorine – 146.5; Methyl Isocyanate – 5 (**Source:** Praxair, other)

What Makes NH₃ Optimal?

- Affordability
- Safety
- Efficiency
- **Environmental Performance**
- Sustainability
- Production Flexibility
- End-Use Flexibility
- County Building

Cleaner Than Hydrogen?!

No carbon

NH₃ used to clean up NOx

Zero measurable pollutants possible with IC engines

Not a greenhouse gas

Ozone depletion number of zero

Not a known carcinogen

Huge natural occurrence in the earth's nitrogen cycle

Natural mechanisms for spill remediation

What Makes NH₃ Optimal?

- Affordability
- Safety
- Efficiency
- Environmental Performance
- **Sustainability**
- Production Flexibility
- End-Use Flexibility
- County Building

Sustainability

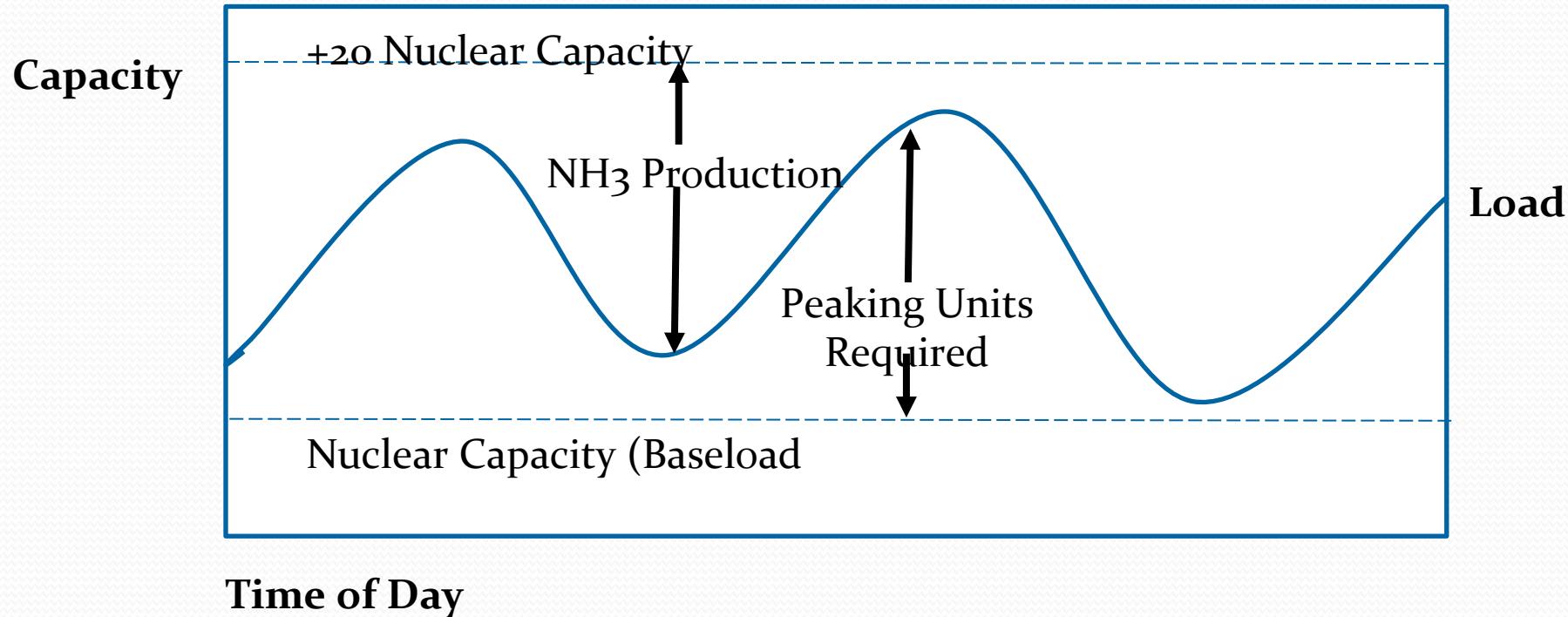
As long as the sun continues to shine, the earth's atmosphere contains significant amounts of nitrogen, there is some readily available source of hydrogen, and iron is available as a catalyst....

NH_3 will be sustainable on planet earth!

What Makes NH₃ Optimal?

- Affordability
- Safety
- Efficiency
- Environmental Performance
- Sustainability
- **Production Flexibility**
- End-Use Flexibility
- County Building

Production Flexibility


NH_3 can be produced using any and all primary energy sources including but not limited to Solar, natural gas, wind, nuclear, OTEC, coal, hydro, etc.

Scalability of NH_3 production plants is very good and could range from units as small as one ton per year to mega-ton production facilities.

Affordable NH_3 could be produced from (carbon free) natural gas now and from any renewable energy source (and water) in the near future.

Several promising new alternative NH_3 production technology alternatives are being developed (i.e. alternatives to Haber-Bosch)

Nuclear Synergism – Fusion?

What Makes NH₃ Optimal?

- Affordability
- Safety
- Efficiency
- Environmental Performance
- Sustainability
- Production Flexibility
- **End-Use Flexibility**
- County Building

End Use Flexibility

SI engines

CI engines – dual fuel now...high compression future

Fuels cells

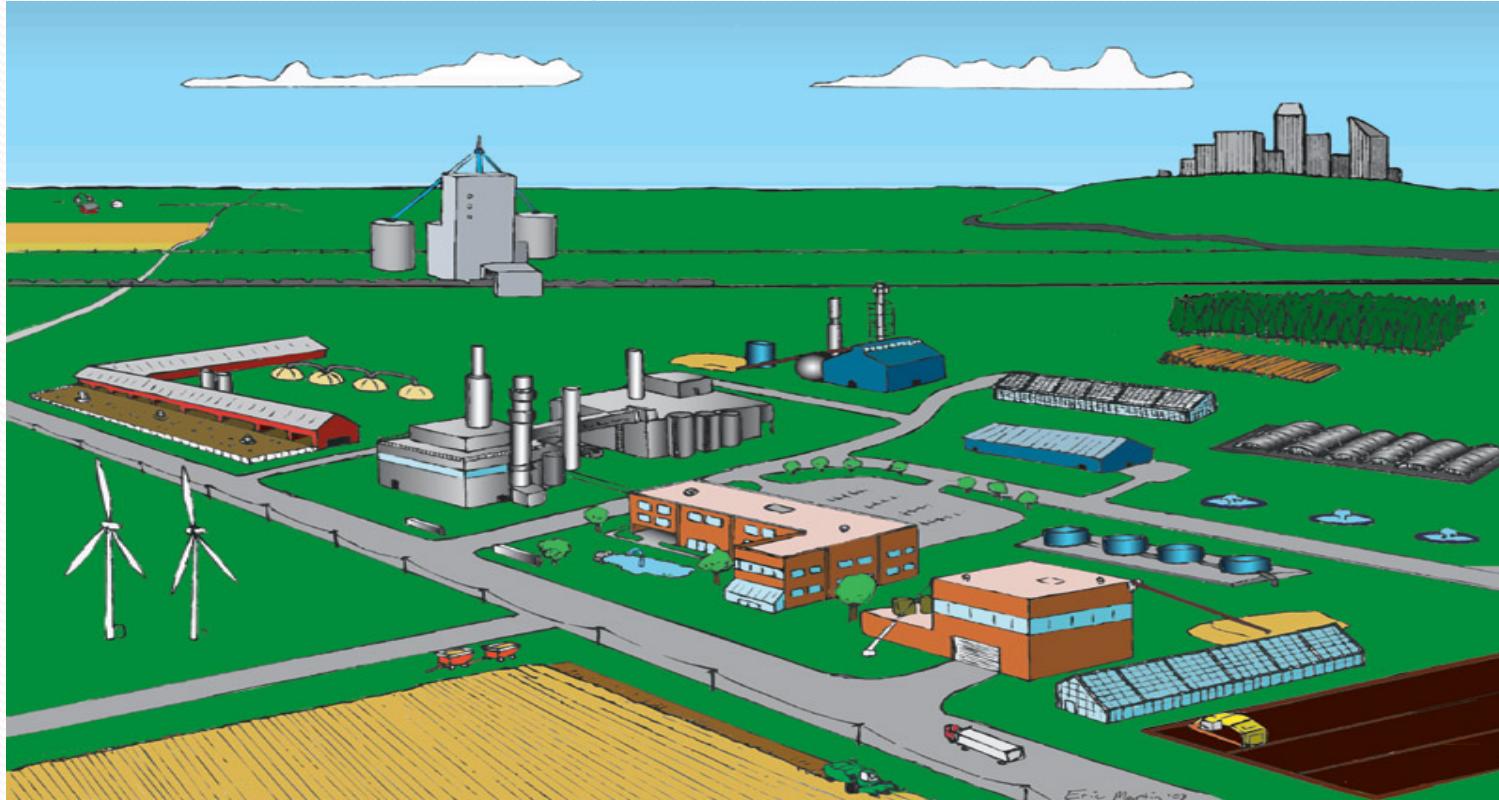
Gas turbines

Burners

Optimizing prime movers for a single fuel has huge benefits. An engine designed to use both gasoline and ethanol severely compromises the efficiency potential of ethanol, another very-high octane fuel.

What Makes NH₃ Optimal?

- Affordability
- Safety
- Efficiency
- Environmental Performance
- Sustainability
- Production Flexibility
- End-Use Flexibility
- **Country Building**

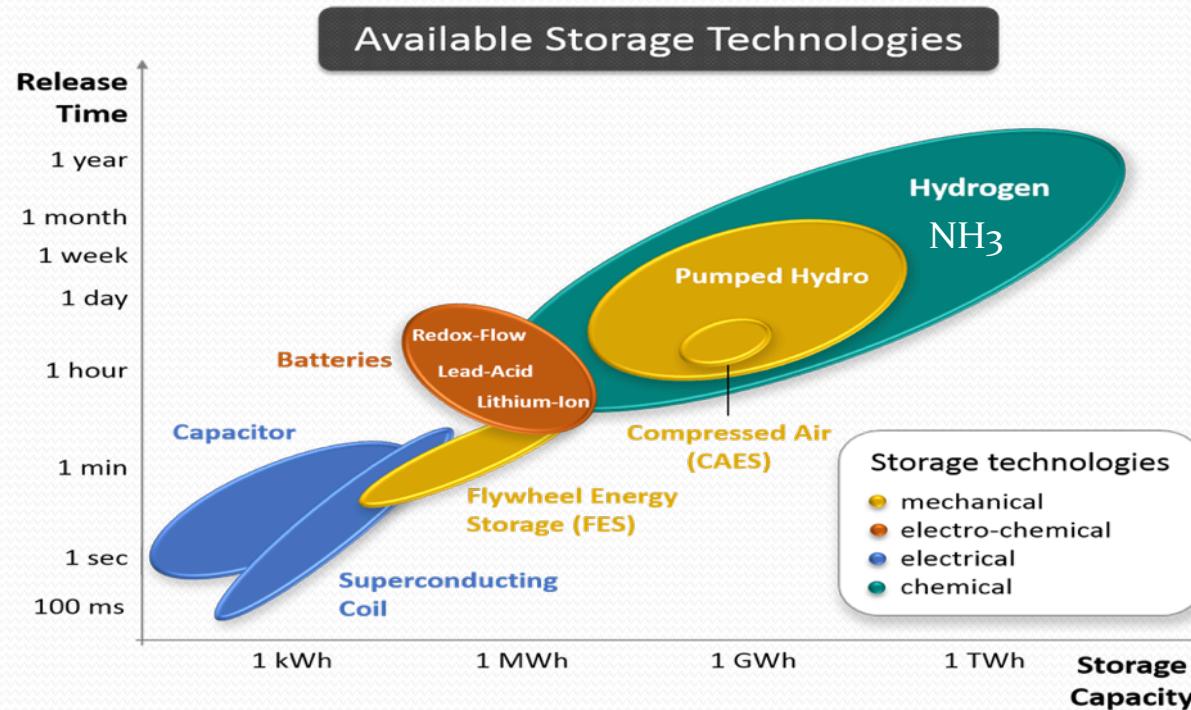

Sustainable, Self-Sufficient Community

NH₃ allows a country to develop a local:

1. transportation fuel economy
2. power generation economy
3. renewable energy storage economy
4. fertilizer and food production economy (up to 4x yield improvements)
5. a bio-based (crop-based) chemical production economy
6. A refrigeration industry

Petroleum refineries are very complex and require a very large scale.

Bio-Refinery



Renewable Energy: Stranded and Long-term Storage

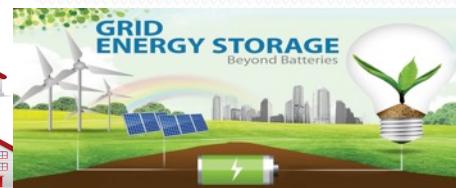
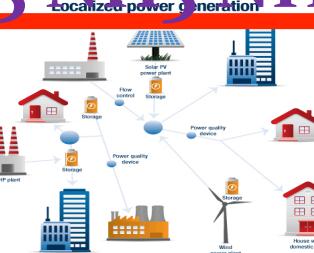
A significant amount of renewable energy will either be stranded (i.e. produced remotely and converted to a form that can be transported long distances) or will need long-term storage. Chemical storage likely be used for these two applications. NH₃ will likely be the most cost-effective option for chemical storage.

Once renewable energy is stored as NH₃, it is more efficient and cost-effective to use the NH₃ as a liquid transportation fuel in FCV and/or ICEV than to convert it to electricity and deliver it through the grid to EV filling stations for use in EV's.

Effective Energy Storage

Source: Hydrogenius Technologies. NH₃ addition by NKO.

NH₃ Big Picture

NH₃ NH₃ NH₃ NH₃ NH₃ NH₃ NH₃ NH₃ NH₃

Transportation

Agriculture

Conclusion

NH₃:

- is clearly, the most affordable carbon-free fuel
- is the most efficient fuel in an internal combustion engine
- has optimal environmental performance
- has production flexibility second to none
- has excellent end-use flexibility (tunable fuel)
- has tremendous business development opportunities
- is the optimal choice for an alternative fuel

Prodigious business opportunities and tremendous world-wide benefits.

Top Technology Developments

Vaccines
Synthetic Ammonia Fertilizer (Haber-Bosch)
Personal Computer
Internet
 NH_3 Energy?

NH₃ – The Optimal Alternative Fuel

Thank You!

Contact:

Norm Olson – President NH₃ Fuel Association
nkogman@yahoo.com

John Holbrook- Executive Director NH₃ Fuel Association
john.holbrook@charter.net

<https://nh3fuelassociation.org/>