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Outline of the presentation
1. Introduction, objective of the study
2. Analysis of the life cycle segments

• Thermo-catalytic ammonia synthesis
• Ammonia storage and distribution
• Ammonia decomposition and separation

3. Results and discussions
 Lifecycle CO2 emissions per produced shaft work
 Energy balance at ammonia bio-synthesis
 Heat and work recovery potential during power generation
 Energy balance of an engine fuelled with hydrogen from ammonia
 Life cycle efficiency and cost

4. Conclusions



Introduction, objective of the study

• Synthetic fuels: a drive towards a sustainable
economy

• Europe: 20% synfuels share by 2020 (Larivé et
al., 2004)

• Ammonia – NH3: nitrogen AND hydrogen source
• Ammonia: synfuel AND biofuel
• OBJECTIVE: analysis of the life cycle (in terms

of costs, efficiency and GHG emissions) of
ammonia as hydrogen source (synfuel) –
synthesis, distribution and storage, hydrogen
generation, power generation.



The common approach to hydrogen economy
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It is believed by many that hydrogen is an ideal synthetic fuel. However,
implementing a global hydrogen-based economy, at present, appears to
be non-feasible unless suitable production, distribution and storage
technologies are found



Thermo-catalytic ammonia synthesis

• Haber-Bosh process invented in the beginning of the 20th century
• increasing the temperature such that the nitrogen molecule receives

enough energy to be cracked
• If the temperature is not high enough, nitrogen atoms remain

strongly bound at the surface and “poison” the catalyst which is
therefore not able to perform a new catalytic cycle.

• the forward reaction is facilitated by low temperatures and high
pressures

• Typically the operating temperature and pressure are 600oC and
100-250 bar, respectively for 25-35% conversion



Haber-Bosch ammonia synthesis unit coupled to a
Rankine cycle for heat recovery and work conversion
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200 bar  15% conversion
400 bar  25% conversion
2.7 GJ heat generated per t NH3
1.5 t steam @125 bar / tNH3
90% recovery of NH3 formation heat

0.4 tCO2/tNH3 to produce electricity
needed to run the plant

2.2 tCO2/tNH3 from natural gas

16.2 tCO2/tNH3 from coal



Storage and distribution
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specific exergy is 19kJ/kg or 1.1GJ per 60kt
recovered exergy represents ~5% from the energy spent to fill the tank and keep it refrigerated for whole season

•regular carbon steel, designed for ~20
bar operating pressure
•3 t of ammonia can be stored per tone of
steel
•tank weight is about ¼ from the
ammonia mass
•45klitres road cisterns
•130klitres rail cisterns
•50kt ship cisterns
•Pipeline: 93% HHV efficiency @14GJ/m3



Possible options for thermo-catalytic
ammonia decomposition reactors
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•required enthalpy represents 10.6% HHV or 12.5% LHV of the produced hydrogen
•at 400oC the equilibrium conversion of NH3 is very high 99.1% (Yin et al., 2004)
•Fe, Ni, Pt, Ir, Pd, Rh, but Ru appears to be the best, >60 kW H2 power per kg of catalyst
•rate limiting: <~300oC N2 recombination, >550oC cleavage of N-H bond
•Activation energy: 180 kJ/mol at low T and 21 kJ/mol at high T 



State of the art on ammonia
thermo-catalytic cracking
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H5.1N5.0NH Practical temperature
range: 300 to 700oC,
where the reaction heat
drops below 2.5 MJ/kg
which represents 12%
from HHV.

Cracking reactor compactness:
50 kW/liter @ 365oCSorensen et al.
170kW/liter @ 600oCGanley et al. 
Ammonia electrolysis is a feasible alternative to thermal cracking



The layout of hydrogen from ammonia
economy for transportation
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Results
•life-cycle: ammonia synthesis, distribution and storage, hydrogen generation from
ammonia and its use for power production.
•efficiency, cost and CO2 mitigation potential of hydrogen-from-ammonia approach
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Proposed power generation system
using hydrogen from ammonia
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There is a filed patented by Dincer and Zamfirescu (2008) that includes 9 schemes
of using ammonia as hydrogen source, working fluid and NOx reduction agent



Heating process and work recovery
from the ammonia fuel stream
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Energy balance on two types of
hydrogen fuelled engines
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On-board cooling with ammonia
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T=15oC  the specific vapor
enthalpy is 1.62 MJ/kg which
represents 7.2% from the
HHV



On-board cooling with ammonia
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Life cycle efficiency
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Cost correlation for hydrogen obtained
from ammonia at distribution points
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Comparison of ammonia as hydrogen
source with other options

Fuel/Storage  

P

 
[bar]  

!

 

[kg/m 3] 

HHV 
[MJ/kg]  

''HHV'

 

[GJ/m 3] 

c

 

[CN$/kg]  

'''C

 

[CN$/m3] 

HHVc
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Gasoline/Liquid  1 736 46.7 34.4 1.36 1000 29.1 

Hydrogen/CH 4 pressurized t ank 250 188 35.5 6.6 1.20 226 33.8 

Hydrogen /Metal hydrides  14 25 142 3.6 4.00 100 28.2 

Hydrogen /NH3 pressurized tank  10 603 25.0 15.1 0.30 181 12.0 

 



Methane cracking: MJ75HC21CH21
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•methane cost is 0.185 from the cost of hydrogen for equivalent energy content
•16 kg of CH4 contain 4 kg of H2
•CH4 decomposition needs about 22% from its HHV vs. 12% for NH3
•CH4 is toxic with long term health effects, flammable, has explosion danger
and greenhouse gas effect
•Cost in Ontario ~CN$0.45 per uncompressed natural gas
•compression work is significant and this raises the CNG price about 3 times
•Because of its gaseous phase the energy density in the CNG tank is low (i.e.,
6.6 GJ/m3) and this fact leads to an expensive specific energy (i.e., 33.8 $/GJ)
•Ammonia vs CH4: stores more hydrogen energy per tank volume, energy cost
is about 3 times less, despite of its toxicity it has short term and completely
recoverable health effects, it presents less danger because ammonia is not
flammable and does not present explosion risk .

Ammonia vs Methane:
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Energy at shaft with respect to the
energy stored in fuel tank
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Ford Focus on ammonia vs
hydrogen

Parameter  Unit  H2 fuel  NH 3 fuel  

Storage tank volume  liter  217 76 

Storage pressure  bar  345 10 

Energy on -board  MJ 710 1025 

Cost of full tank  $ 25 14…28 

Driving range  km 298 430 

Driving cost  $/100km  8.4 3.2…6.4 

Tank Compactness  Liter/100km  73 18 

 

•power-train performance is characterized by 1.19 MJ/km.

•the cost of ammonia is assumed in the range $0.30…0.6/kg



CONCLUDING REMARKS
• Ammonia: hydrogen source, working fluid and Nox reduction agent on-board
• GHG mitigation if hydrogen used to synthesize ammonia is 68 gCO2 per MJ.
• Thermo-catalytic membrane reactors are the most promising devices for hydrogen

generation from NH3.
• If ammonia is used simultaneously as working fluid and fuel, the efficiency increases

with at least 2%.
• NH3 can be stored seasonally as opposing to H2 which must be consumed in few

days after production.
• It is suggested a method to recover at least 5% from the energy consumed at cold

NH3 storage.
• Due to high distribution cost hydrogen is the most expensive fuel with ~282 C$/MJ.
• Ammonia delivered and converted into shaft energy is cheaper than hydrogen even if

at the production phase ammonia could be with up to ~25% more expensive than the
hydrogen from which is synthesised.

• The energy generated at shaft is 25% higher in hydrogen-from-ammonia case with
respect to gasoline, per unit of fuel volume, and per unit of mass it is 30% higher.
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