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Introduction, objective of the study

Synthetic fuels: a drive towards a sustainable
economy

Europe: 20% synfuels share by 2020 (Larive et
al., 2004)

Ammonia — NH;: nitrogen AND hydrogen source
Ammonia: synfuel AND biofuel

OBJECTIVE: analysis of the life cycle (in terms
of costs, efficiency and GHG emissions) of
ammonia as hydrogen source (synfuel) —
synthesis, distribution and storage, hydrogen
generation, power generation.




The common approach to hydrogen economy
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It is believed by many that hydrogen is an ideal synthetic fuel. However,
implementing a global hydrogen-based economy, at present, appears to
be non-feasible unless suitable production, distribution and storage

technologies are found



Thermo-catalytic ammonia synthesis

Haber-Bosh process invented in the beginning of the 20t century

increasing the temperature such that the nitrogen molecule receives
enough energy to be cracked

If the temperature is not high enough, nitrogen atoms remain
strongly bound at the surface and “poison” the catalyst which is
therefore not able to perform a new catalytic cycle.

the forward reaction is facilitated by low temperatures and high
pressures

Typically the operating temperature and pressure are 600°C and
100-250 bar, respectively for 25-35% conversion



Haber-Bosch ammonia synthesis unit coupled to a
Rankine cycle for heat recovery and work conversion

Feed: NytH 200 bar = 15% conversion
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Storage and distribution

Seasonal

50 m diameter
30 m Height
60 kt ammonia

Desuperheater

Liquid NH; @-33°C, 1atm

Throttling valve

Ammonia pump

ex =(h—hy)—Tpls —s

specific exergy is 19kJ/kg or 1.1GJ per 60kt

[&)]

sregular carbon steel, designed for ~20
bar operating pressure

3 t of ammonia can be stored per tone of
steel

tank weight is about 7 from the
ammonia mass

*45klitres road cisterns

*130Kklitres rail cisterns

50kt ship cisterns

*Pipeline: 93% HHYV efficiency @14GJ/m3

recovered exergy represents ~5% from the energy spent to fill the tank and keep it refrigerated for whole season



Possible options for thermo-catalytic
ammonia decomposition reactors
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b) Plate catalytic bed reactor

with Ha selective membrane c) Catalytic membrane reactor

a) Tubular catalytic bed reactor

srequired enthalpy represents 10.6% HHV or 12.5% LHV of the produced hydrogen

«at 400°C the equilibrium conversion of NH; is very high 99.1% (Yin et al., 2004)

*Fe, Ni, Pt, Ir, Pd, Rh, but Ru appears to be the best, >60 kW H, power per kg of catalyst
erate limiting: <~300°C N2 recombination, >550°C cleavage of N-H bond

Activation energy: 180 kJ/mol at low T and 21 kd/mol at high T



State of the art on ammonia
thermo-catalytic cracking

Practical temperature
range: 300 to 700°C,
where the reaction heat
drops below 2.5 MJ/kg
which represents 12%
00 e from HHV.
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Cracking reactor compactness:

50 kW/liter @ 365°C=>»Sorensen et al.

170kW/liter @ 600°C=>»Ganley et al.

Ammonia electrolysis is a feasible alternative to thermal cracking



The layout of hydrogen from ammonia
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Results

slife-cycle: ammonia synthesis, distribution and storage, hydrogen generation from
ammonia and its use for power production.
-efficiency, cost and CO, mitigation potential of hydrogen-from-ammonia approach
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Proposed power generation system
using hydrogen from ammonia
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Heating process and work recovery
from the ammonia fuel stream
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Energy balance on two types of
hydrogen fuelled engines

a) Hydrogen fuelled engine b) Engine fuelled with H, sourced from NH,



On-board cooling with ammonia

Consumed
fuel
NH, vapour
NH, liquid
Ai<(-out Air-in
cold “_ warm
h" (T)hNH3 = mair (hin - hout )

The effectiveness of the
cooling effect can be
quantified as a fraction of
the HHV of ammonia

e, =h"(TJHHV

T=15°C =» the specific vapor
enthalpy is 1.62 MJ/kg which
represents 7.2% from the
HHV



On-board cooling with ammonia
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Total effectiveness

Here we define some effectiveness associated to the cooling effect

Cooling while extracting ammonia vapor from tank: ¢, = & "(T )/ HHV

Total effectiveness = Engine efficiency +
cooling efficiency +

turnine work efficiency

E. =N+ + €



Life cycle efficiency
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Cost correlation for hydrogen obtained
from ammonia at distribution points
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Comparison of ammonia as hydrogen
source with other options

Fuel/Storage HHV
[bar] | [kg/im?] | [MJ/kg]  [GJ/m?] | [CN$/kg] | [CN$/m’] | [cN$/GU]
Gasoline/Liquid 1 736 46.7 34.4 1.36 1000 29.1
Hydrogen/CH , pressurized t ank 250 188 35.5 6.6 1.20 226 33.8
Hydrogen /Metal hydrides 14 25 142 3.6 4.00 100 28.2
Hydrogen /NH; pressurized tank 10 603 25.0 15.1 0.30 181 12.0




Ammonia vs Methane:
Methane cracking: 1/2CH, —1/2C + H, + 75MJ

H.0 = H,+1/20,+288MI 911 MJ for one kmol of H, equivalent
1/2C+H, —1/2CH, - 75MJ

*methane cost is 0.185 from the cost of hydrogen for equivalent energy content
*16 kg of CH, contain 4 kg of H,

*CH, decomposition needs about 22% from its HHV vs. 12% for NH,

*CH, is toxic with long term health effects, flammable, has explosion danger
and greenhouse gas effect

*Cost in Ontario ~CN$0.45 per uncompressed natural gas

ecompression work is significant and this raises the CNG price about 3 times
*Because of its gaseous phase the energy density in the CNG tank is low (i.e.,
6.6 GJ/m?3) and this fact leads to an expensive specific energy (i.e., 33.8 $/GJ)
/Ammonia vs CH,: stores more hydrogen energy per tank volume, energy cost
is about 3 times less, despite of its toxicity it has short term and completely
recoverable health effects, it presents less danger because ammonia is not
flammable and does not present explosion risk .
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Energy at shaft with respect to the

enerqy stored in fuel tank

ammonia
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Ford Focus on ammonia vs

hydrogen

spower-train performance is characterized by 1.19 MJ/km.

«the cost of ammonia is assumed in the range $0.30...0.6/kg

Parameter H, fuel [ NH, fuel
Storage tank volume liter 217 76
Storage pressure bar 345 10
Energy on -board MJ 710 1025
Cost of full tank $ 25 14...28
Driving range km 298 430
Driving cost $/100km 84 | 32...64
Tank Compactness Liter/100km 73 18



CONCLUDING REMARKS

Ammonia: hydrogen source, working fluid and Nox reduction agent on-board
GHG mitigation if hydrogen used to synthesize ammonia is 68 gCO, per MJ.

Thermo-catalytic membrane reactors are the most promising devices for hydrogen
generation from NH,.

If ammonia is used simultaneously as working fluid and fuel, the efficiency increases
with at least 2%.

NH; can be stored seasonally as opposing to H, which must be consumed in few
days after production.

It is suggested a method to recover at least 5% from the energy consumed at cold
NH; storage.

Due to high distribution cost hydrogen is the most expensive fuel with ~282 C$/MJ.

Ammonia delivered and converted into shaft energy is cheaper than hydrogen even if
at the production phase ammonia could be with up to ~25% more expensive than the
hydrogen from which is synthesised.

The energy generated at shaft is 25% higher in hydrogen-from-ammonia case with
respect to gasoline, per unit of fuel volume, and per unit of mass it is 30% higher.
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