

Hydrogen Engine Center, Inc.

www.hydrogenenginecenter.com

Ammonia Fuel Network

Ted Hollinger

September 28, 2010

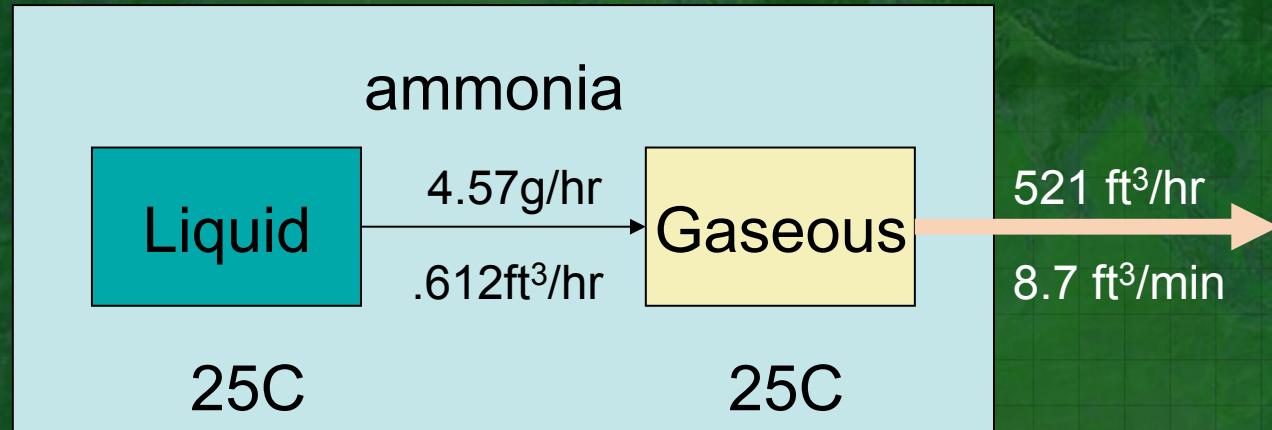
Topic for Discussion

Converting Liquid NH₃ to an Energy Dense Engine Fuel

Issues to be discussed

- Ammonia energy requirements
 - ammonia is stored as a liquid and needs to be converted to a gas.
- Ammonia ignition
- Ammonia 'fuel' flame velocity
- Power comparison of ammonia vs NG

Liquid Ammonia to Gaseous Ammonia



Heat of Evaporation: 1369 KJ/Kg or 589 btu/lb

Liquid Ammonia to Gaseous Ammonia

Liquid to Gaseous conversion (evaporation) for a 20 kW ICE @ 35% efficiency

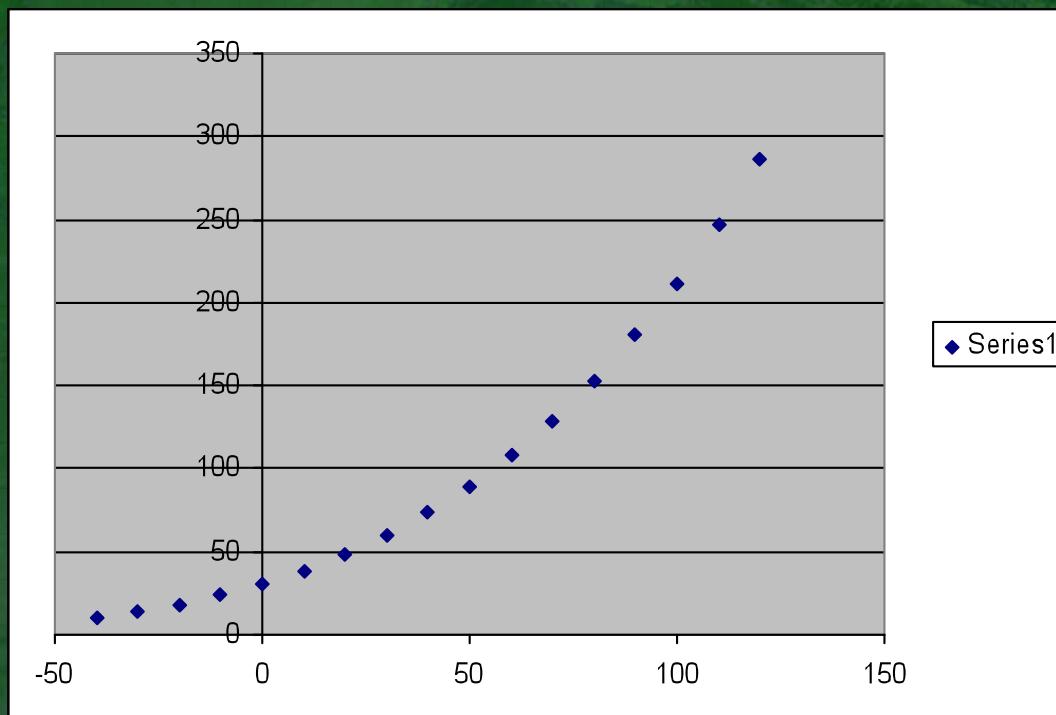
$$4.57 \text{ gal/hr} \times 5.15 \text{ lb/gal} \times 589 \text{ btu/lb} \times \text{kW hr/3412 btu} = 4.06 \text{ kW}$$

$$4.57 \text{ gal/hr} \times 231 \text{ in}^3/\text{gal} \times \text{ft}^3/1728 \text{ in}^3 = .612 \text{ ft}^3/\text{hr}$$

$$.612 \text{ ft}^3/\text{hr} \times 850 = 521 \text{ ft}^3/\text{hr} = 8.7 \text{ ft}^3/\text{min}$$

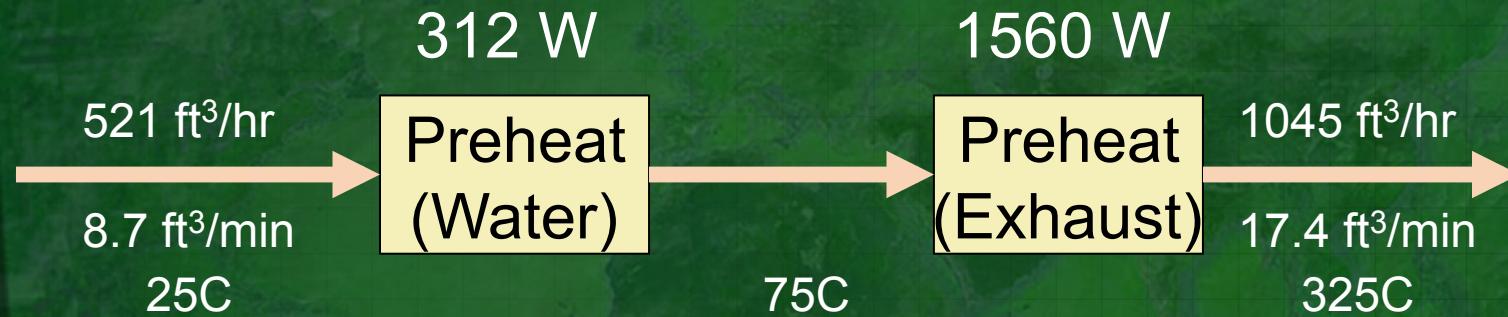
Liquid Ammonia to Gaseous Ammonia

- An eighty gallon tank of ammonia dropped from 135 psi (90F) to 75 psi (50F) in 30 minutes when the ammonia was removed as a vapor at a similar rate.
- Ammonia needs to be taken from the storage tank as a liquid to avoid freezing up the tank.
- 80 gallon tank



Liquid Ammonia to Gaseous Ammonia

Energy to heat NH_3 gas: .265 w hr/lb C


Ammonia tank pressure (psi) vs temperature (F)

Hydrogen Source Diagram

Gaseous NH₃ heating

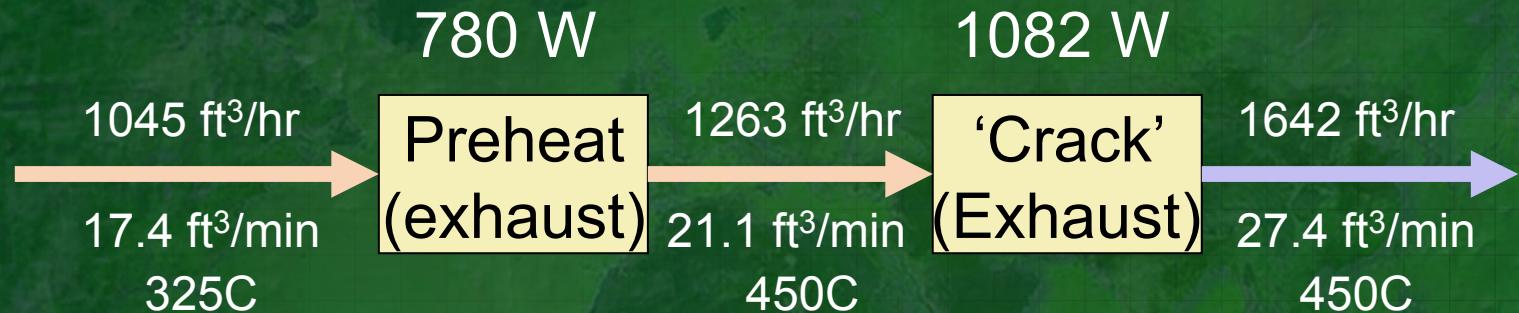
$$.265 \text{ whr/lbC} \times 50 \text{ C} \times 23.54 \text{ lb/hr} = 312 \text{ W}$$

$$.265 \text{ whr/lbC} \times 250 \text{ C} \times 23.54 \text{ lb/hr} = 1560 \text{ W}$$

Total power requirement = 1872 watts

$$\text{Gas flow} = 521 \text{ ft}^3/\text{hr} \times 598\text{k}/298\text{k} = 1045 \text{ ft}^3/\text{hr}$$

Hydrogen Source Diagram



Energy to 100% 'crack' NH_3 : 8.4 kJ/ft³

Hydrogen Source Diagram

Gaseous NH_3 heating

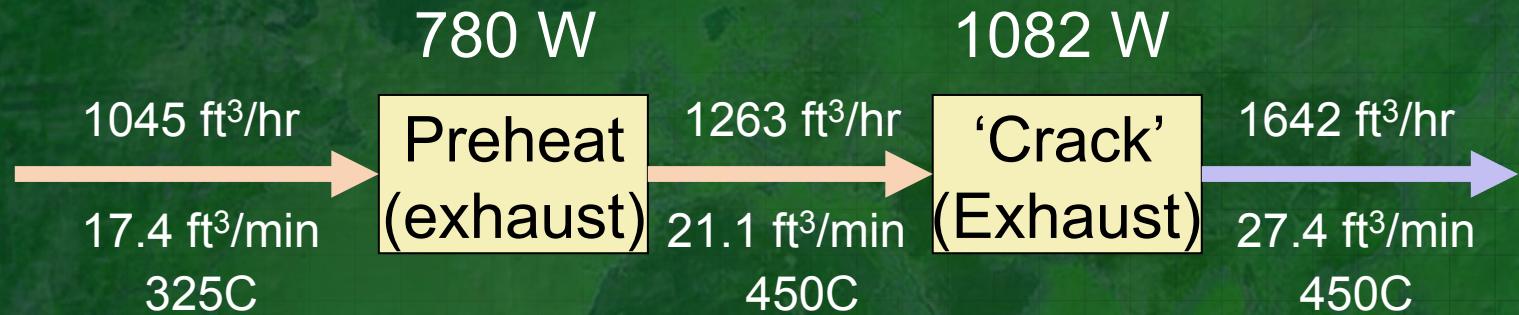
$$.265 \text{ whr/lbC} \times 125 \text{ C} \times 23.54 \text{ lb/hr} = 780 \text{ W}$$

$$1045 \text{ ft}^3/\text{hr} \times 723\text{K}/598\text{K} = 1263 \text{ ft}^3/\text{hr}$$

$$8.4 \text{ kJ/ft}^3 \times 1545 \text{ ft}^3/\text{hr} \times \text{kWhr}/3600 = 3605 \text{ W (100\%)}$$

$$3605 \times 30\% = 1082 \text{ watts}$$

$$1263 \text{ ft}^3/\text{hr} \times 30\% \times 2 = 758 \text{ ft}^3/\text{hr} \text{ (25\% N}_2\text{, 75\% H}_2\text{) or}$$


$$189 \text{ ft}^3/\text{hr} \text{ N}_2 \text{ and } 568 \text{ ft}^3/\text{hr} \text{ H}_2 \quad 1263 \text{ ft}^3/\text{hr} \times .70\% =$$

884 ft³/hr NH₃ for a total gas flow of 1642 ft³/hr

Hydrogen Source Diagram

Gaseous NH_3 heating

Output gas composition by volume is:

- Hydrogen $568 \text{ ft}^3/\text{hr} = 34.6\%$
- Nitrogen $189 \text{ ft}^3/\text{hr} = 11.5\%$
- Ammonia (NH_3) $884 \text{ ft}^3/\text{hr} = 53.8\%$

Total heat requirement

- Heat of evaporation: 4.06 kW
- Preheating of NH_3 gas: 2.65 kW
- Heat for 'cracking' 1.08 kW

- Total heat required: 7.79 kW

New engineering guide lines

- Heat of Evaporation: 20.3% of output power
- Preheating of NH_3 from 25C: 13.3% of output power
- 30% Cracking of NH_3 : 5.4% of output power
- Total Power 39% of output power

Ammonia ignition

- By mixing ammonia and a fuel the ignition energy can be lowered.
- HEC chose use hydrogen to lower the ignition energy requirement.
- Adding oxygen by itself made very little difference.

Ammonia ignition

- Ammonia has a very high ignition energy
 - > 1000 MJ
- NG (Methane) burns at .30 mJ
- Propane burns at .26 mJ
- Hydrogen has a very low ignition energy
 - .017 MJ

Ammonia 'fuel' flame velocity

- Ammonia is a very slow burning fuel
 - .15m/sec to .23 m/sec
- NG (Methane) burns at .39 m/sec
- Propane burns at .45 m/sec
- Hydrogen is a very fast burning fuel
 - 3.06 m/sec

Ammonia 'fuel' flame velocity

- By mixing ammonia and a fuel and/or oxygen the flame velocity can be improved.
- HEC chose to mix ammonia, hydrogen and nitrogen in the proper amounts to simulate NG and with a second formulation simulate propane to exactly match the flame velocity of each fuel.

Ammonia Fuel Application

- Video of Fork Truck running will be shown at the end of the presentation

Power comparison of Ammonia vs NG

- Natural gas has more btus than ammonia, therefore the thought is that you will get more power with natural gas, BUT it's all about the amount of air that is needed.
- Remember it is not a gas pedal, but instead an air pedal. More power is generated by adding air, not fuel. We use a turbo-charger not a super flow fuel pump for additional power.

Power comparison of Ammonia vs NG

- $3\text{CH}_4 + 6\text{O}_2 = 3\text{CO}_2 + 6\text{H}_2\text{O}$
 - 6 O_2 used
- $8\text{NH}_3 + 6\text{O}_2 = 4\text{N}_2 + 12\text{H}_2\text{O}$
 - 6 O_2 used
- For the same amount of air we can burn 8NH_3 or 3CH_4 , therefore we can get more power from ammonia than from NG.

Thank You!

Hydrogen Engine Center, Inc.

2502 E Poplar St

Algona, IA 50511

www.hydrogenenginecenter.com

Phone: 515-295-3178

Fax: 515-395-1877

Ammonia reference data

- Gallon of NH_3 = 5.15 #
- NH_3 is 3/17 hydrogen (17.6%)
- .91 # hydrogen per gal NH_3 (2.205#/kg)
- 423 ft^3 H_2 per kg
- .412 kg H_2 per gallon NH_3
- 174 cubic feet H_2 per gal NH_3

Engineering data

- Gallon = 231 cubic inches
- Cubic foot = 1728 cubic inches
- 1 hp hr = 2545 btu
- 1 kW hr = 3412 btu
- NH₃ expands 850 x when evaporated
- NH₃ doubles in volume when 'cracked'
- 450C cracking temperature gives 30% H₂