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Hydrogen storage — a challenging task

e Liquefied H,
— Boil-off, cost of liquefying, safety
e High pressure H,

— Cost of compression, safety, volumetric density

e Metal hydrides, e.g. MgH,
— Low bulk density, kinetics

 Complex hydrides, e.g. NaAlH,, LiAlH,

— kinetics/catalyst, synthesis, reversibility

e Chemical hydrides

— Expensive materials, reversibility, complex system

e Physisorption in porous materials
— Material developments, synthesis, gravimetric and volumetric density
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Hydrogen storage materials
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Why not ammonia?

* Dense liquid; ~ 18% of hydrogen
e Optimized catalyst exist

e Easy to reform to H,

* But lig. NH; 1s normally considered too
dangerous 1999
e &6 6 o
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The ammonia-based competitor to metal hydrides:
metal ammine complexes

I Storage unit I To fuel cell

Integrated ammonia I
decomposition catalyst

Release

thermal desorption
( p ) NH;: “largest” chemical

in the world
- o ‘;, k‘»
Mg(NH3)6C12 ¢ S Hydrogen
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Dense and safe ammonia storage:

Controlled release from metal ammine complexes

The ammonia content
Mg(NH,)CL,: 38.1 mol NH./1
Liquid ammonia: 40.1 mol NH,/1

Reversible ammonia storage:
MgCl, + 6NH, — Mg(NH,).l,
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I liter liquid ammonia

=> 1.1 liter storage material
=> 1.3 kg storage material

=> 4000 times lower volatility
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g sample

100g “block™
51.7g NH; stored
74 liter NH,(g) at STP

890 bar “NH.” (1330 bar “H,” eq.)
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Getting NH,/H, out of dense rods:
a self-generated nanoporosity
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High release rate demonstrated (2kg demo unit)

A stable flow of 6 liter/minute was demonstrated for several hours.
Dynamic response possible.
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Several classes of materials

 Low “volatility” — higher operating temperature
— High-T PEM, alkaline, SOFC

e Higher “volatility” — low operating temperature
— Standard PEM systems
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- IOOO/T(K)

MgClZ 6-2
ZnCl2 6-4
ZnCl2 2-1
CaBr2 6-2
CaBr2 1-0
Cal2 2-1
—— Bal2 8-6
——Bal2 4-2
FeCI2 6-2
FeCI2 1-0
FeBr2 2-1
Fel2 6-2
- = =CaClI2 8-4
- = =CaCl2 2-1
FeSO4 6-4
= SrCI2 8-1
SrBr2 2-1
Srl2 8-6
Srl2 2-1
CoCI2 6-2
CoCI2 1-0
—— NH4Cl
NiCI2 2-1
Nil2 6-2
Ni(NO3)2 6-0
MnCI2 2-1
Cu(NO3)2 6-4
CuBr2 5-3,3
Cul2 5-3,3
CuS0O4 5-4
CuS04 2-0

- MgCI2 2-1
ZnClI2 4-2
CaBr2 8-6
CaBr2 2-1
Cal2 6-2
Cal2 1-0
——Bal2 6-4
——Bal22-0
FeCl2 2-1
FeBr2 6-2
FeBr2 1-0
Fel2 2-0
- - -CaCl2 4-2
= ==CaCI2 1-0
FeS0O4 4-3
SrBr2 8-2
SrBr2 1-0
Srl2 6-2
Srl2 1-0
CoCI2 2-1
= MgCI2 1-0
NiCI2 6-2
NiCI2 1-0
NiSO4 6-2
MnCI2 6-2
MnCI2 1-0
CuCI2 3,3-2
CuBr2 3,3-2
Cul2 3,3-2
CuS04 4-2




!!eamsters”

e Conceptually demonstrated: 1g “tablet”
* 30g pineapple slices for H,-generator prototype

 100g “blocks”
e 2kg canister prototype
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Energy Hen51!y:

Comparison with normal batteries

Mg(NH,)Cl,
13.0 kJ/mL (theoretical)
5.2  kJ/mL (assuming 40% energy usage)

EEEEEEEEEEEE

Car battery (5.5L Lead-Cd)
45 Ah, 12V = 1944 kJ
374 mL*equivalent ammine salt

0.8-1 kWh out of fuel cell ~ 1 liter storage unit
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Possible infrastructure ?

Central production

GTS-1 N,

“C”-capture
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GTL/CTL: CO, remains a challenge

Central production
GTL

CH, —— Syn-fuel

Local refuel station

A 4

Syn-fuel |———

Mobile unit/device

/ C02 + H20
/

Syn-fuel — H,— PEM/
™S SOFC AFC

\ /2
AMMWTIEXA/S




Summary

Current status On-going work
e High demonstrated density e Heat management/
— 9.1 w/iw% H,; 108 kg H,/m? optimization
e Reversible  PEM integration
e Fast release kinetics e SOFC integration
e Simple to handle in open atmosphere; * Packaging/re-charging

low pressure
e Low cost

e (CO,-free energy carrier
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Ammonia-enabling technology




