

NH3 – A Key to Energy Independence, Economic Recovery and National Security

Norm Olson P.E.

NH3 VIII

September 18 – 21, 2011

Portland, Oregon

K.I.S.S

N – Nitrogen

78% of earths atmosphere

+

H – Hydrogen

**Most abundant element
In the universe**

NH₃ – best choice for a practical, sustainable alternative fuel

Alternative Fuels or Petroleum Forever?

GETTY

Oil Experts See Supply Crisis in Five Years

International
Energy
Agency

July 10, 2007

BP's Deepwater Horizon – One of many unacceptable risks associated with petroleum.

Oil Experts
See Supply
Crisis in Five
Years

International
Energy
Agency
July 10, 2007

IEA Update

IEA Economist Says World Oil Reserves Less Than Estimated

United Press International 9/7/2009

World oil supplies will pass their peak production sooner than expected, creating conditions for a global energy catastrophe, a French energy economist says. Higher crude prices brought on by sharply growing demand, coupled with a stagnation or decline in supply, could shove any recovery off-course, said Fatih Birol, chief economist at the International Energy Agency in Paris. Birol told The Independent that the public and many governments are ignoring reports that the oil is running out faster than predicted. Birol said global production likely will peak in about a decade, 10 years sooner than most governments have estimated. In an assessment of more than 800 oil fields in the world, Birol found most of the biggest fields already have peaked, and the rate of decline in oil production is running at nearly twice the pace calculated just two years ago, the newspaper said. In addition, chronic under-investment by oil-producing countries likely will result in an "oil crunch" within the next five years, jeopardizing any hope of a recovery from the global economic recession, Birol said. "One day we will run out of oil. It is not today or tomorrow, but one day we will run out of oil and we have to leave oil before oil leaves us, and we have to prepare ourselves for that day," Birol said. "The earlier we start, the better, because all of our economic and social system is based on oil, so to change from that will take a lot of time and a lot of money and we should take this issue very seriously."

Mid East

Many Sources, Same Message

US military warns oil output may dip causing massive shortages by 2015

• Shortfall could reach 10m barrels a day, report says

Terry Macalister , guardian.co.uk,
Sunday 11 April 2010 18.47 BST

Surplus oil production capacity could disappear by 2012 a report from US Joint Forces Command, says.

Photograph: Katja Buchholz/Getty Images

Petroleum Demand

China has been widening its lead over the U.S. as the world's top auto market, with September sales jumping 78 percent over a year earlier, boosted by tax cuts and government stimulus spending.

China's total sales hit 9.66 million vehicles in the first nine months of the year, up 34 percent from a year earlier and are forecast to top 12 million units for the year. Previously only Japan and the U.S. have exceeded 10 million vehicles in annual output.

Copyright © 2009 The Associated Press.

Risks Associated with Petroleum

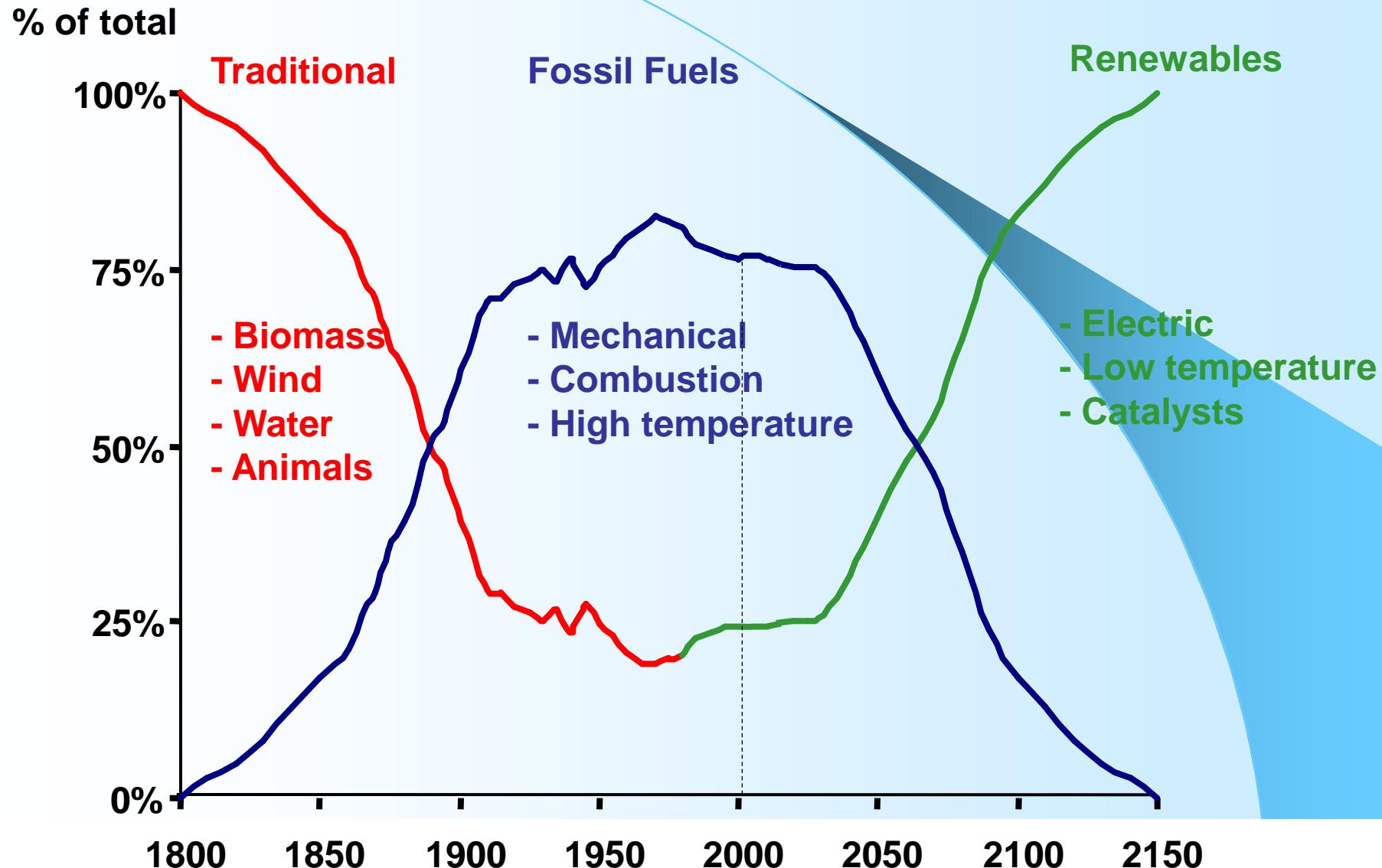
Peak Oil

Terrorism

War/Regional Conflict

Natural disasters

Equipment/human failure


Supply – demand

Environmental degradation

Economic recession/depression

Background Information

The Fossil Fuel Era

Source: Ewald Breunesse, Shell Netherlands, 14th IAMA Annual World Conference, Montreux, June 14th 2004

BP Statistical Review of World Energy – June 2011

World Resource BB Oil Equiv.	Oil 1383	Nat. Gas 1234	Coal 3092
---------------------------------	-------------	------------------	--------------

Oil Proved Reserves (2010): OPEC – 70% (inc. Canadian oil sands)

U.S. Reserves to Production (R/P) ratio:

Oil – 11.3 years

Natural Gas – 12.6 years

Coal – 241 years

The Ideal Transportation Fuel

- Can be produced from any raw energy source (i.e. wind, solar, biomass, coal, nuclear, hydro etc.) **Don't exclude wind, solar, hydro and nuclear energy as potential transportation fuel sources!!!**
- Is cost effective
- Has significant storage and delivery systems already in place
- Environmentally friendly
- Can be used in any prime mover (i.e. diesel engines, fuel cells, SI engines, gas turbines, etc.)
- Has a proven, acceptable safety record

NH3 Basics 1

- NH3 can be produced from any raw energy source, including all fossil, renewable and nuclear sources.
- NH3 is normally cost competitive with gasoline as a transportation fuel
- NH3 has extensive, worldwide transportation and storage infrastructure already in place
- NH3 is very environmentally friendly when used as a transportation fuel and produces only N2 and H2O at the tailpipe with low-cost emissions controls.
- Ammonia has been successfully demonstrated in SI engines, CI engines, fuel cells and burners. Ammonia can replace natural gas, propane, gasoline and diesel fuel.

NH3 Basics 2

- The U.S. imported over 50% of it's nitrogen fertilizer for the first time in 2004 and continues to import increasingly more than it produces domestically
- Ammonia high cost partially due to highly seasonal nature of use (inefficient use of infrastructure)
- NH3 has been produced from coal in Beulah, North Dakota for decades and with CO2 capture since 2000. China has huge coal to NH3 capacity.
- NH3 cost 2010/2011 from \$200 - \$400 MT

Alternative Fuel Candidates

Major Considerations

Coal (converted to liquid or gaseous fuel) is the only U.S. fossil resource abundant enough to replace all petroleum transportation fuels. NH3 is one of the most profitable, high-volume chemicals that can be produced using coal. China produces huge quantities of low-cost NH3 from coal.

We have to decide if carbon is a major issue or not? If it is, hydrogen delivered as NH3 is the only practical transportation fuel choice.

Solar and nuclear energy will become major future energy sources and potentially sooner than many people think. It will be very foolish if we don't plan to use these major, future primary-energy resources to help meet transportation fuel needs. NH3 is the only practical transportation fuel which can be produced from all of these sources.

Alternative Fuel Candidates

Biodiesel – significant new sources of FOG's will be needed

Electric Vehicles – will all-electric vehicles eliminate the need for liquid transportation fuels?

Alcohol Fuels – will cellulosic alcohol fuels meet all of our transportation fuel needs?

Natural gas – Does T. Boone really have the best solution?

Drop-in replacements – no delivery infrastructure or engine modifications required.

DME – a dark horse candidate?

Methanol – may be a good choice.

NH3 – a formidable candidate

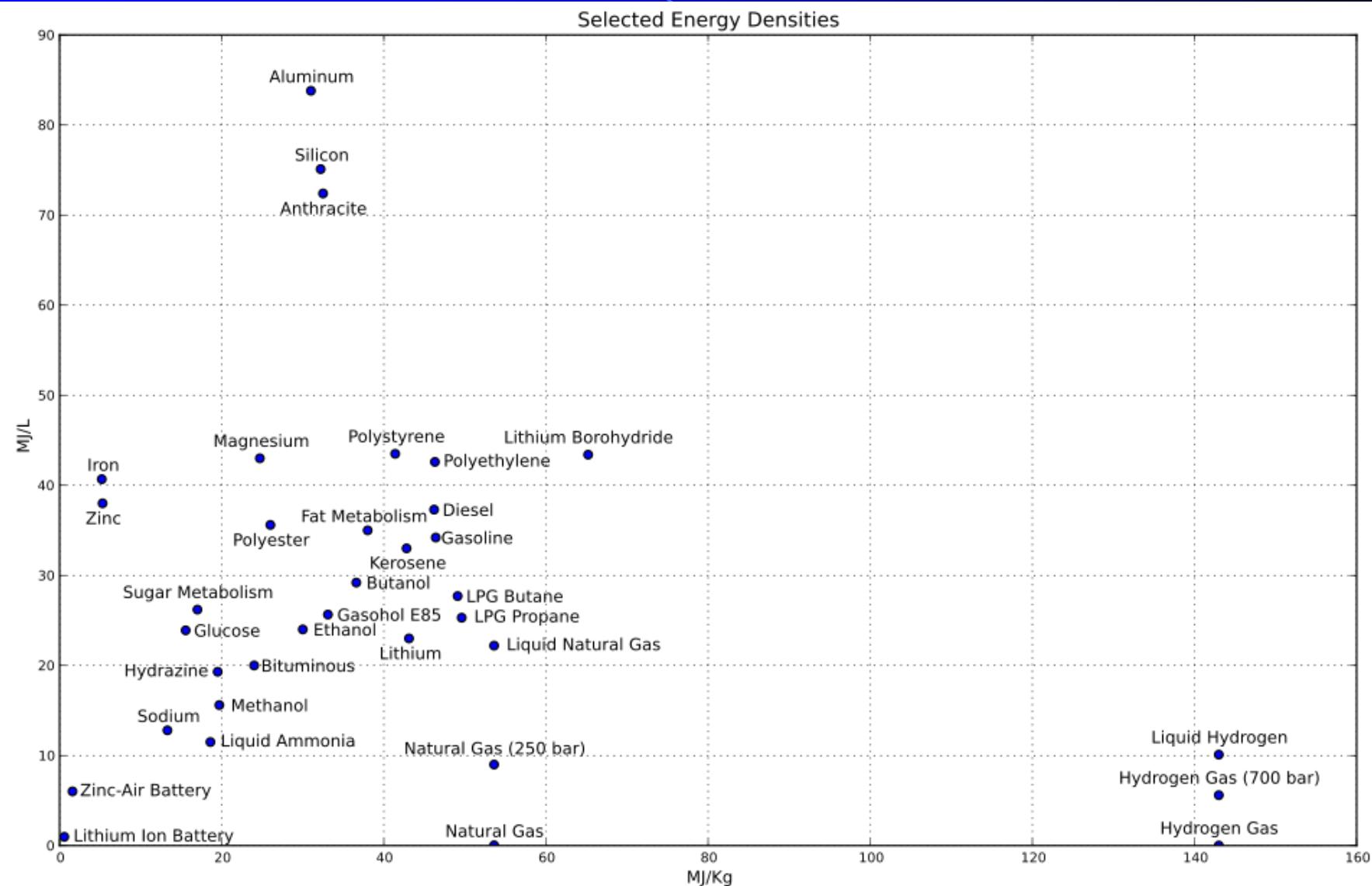
Alternative Fuel Candidates

Biobased

All current existing sources of fats, oils, and grease are very small compared to the demand for diesel fuel. Food vs. fuel issues can be a problem if non-algae sources of oil (e.g. soybean oil, canola oil, etc.) are used. Scale-up issues associated with algae production have been difficult to overcome.

Alternative Fuel Candidates

All Electric Vehicles


Electric Vehicles

- + very efficient use of electricity
- charging infrastructure for quick charge
- energy density
- cost

The barriers associated with cost-effective, long-range, quick-charge electric vehicles are at least as challenging as those associated with hydrogen (Chu's 4 miracles)

“It’s Time to Kill the Electric Car, Drive a Stake Through Its Heart and Burn the Corpse”, John Peterson, August 25, 2011. Suggested reading.

Energy Densities

Alternative Fuel Candidates

Alcohols

Alcohols – With the exception of methanol, alcohols are difficult to produce cost-effectively from cellulose, coal or other carbon/hydrogen sources. Corn to alcohol has some fairly significant opposition due to the “food vs. fuel” issue. Alcohols can not be produced from wind, solar, OTEC, nuclear or other similar important future energy sources. Any land that can produce significant amounts of cellulosic biomass could also produce significant amounts of food.

Alternative Fuel Candidates

Natural Gas

Natural Gas - Natural gas can not be produced from wind, solar, OTEC, nuclear or other similar important future energy sources. It can be made with existing, commercially available technologies from cellulosic biomass and coal. Expensive to store and transport via ship, LNG at -278 degrees F. Compared to coal and petroleum, there is not as much natural gas available. Russia has the largest natural gas reserves.

- + Extensive pipeline systems already in place.
- + Improved fracking and new discoveries are making natural gas a more attractive alternative transportation fuel.

Alternative Fuel Candidates

Drop-in Replacements

Drop-in Replacements - F/T fuels (both diesel and gasoline substitutes) and other direct gasoline and diesel fuel replacements can be made from coal, natural gas and biomass.

- Can't be produced from wind, solar, ocean, hydro or nuclear resources.
- + Compatible with existing infrastructure and end use applications.

Alternative Fuel Candidates

NH3 – “The Other Hydrogen”

NH3 - Unlike all other alternative fuel candidates, NH3 can be produced from wind, **solar**, OTEC, **nuclear** or other similar important future energy sources. Easily produced using commercially available technologies (i.e. thermal gasification, anaerobic digestion) from cellulosic biomass and coal. China has a huge, existing coal to NH3 industry. Stores easily as a liquid at milder conditions (i.e. lower pressure, higher temperature) than propane. Proven performance in pipelines. Natural gas pipelines converted to transport NH3 would gain 50% additional energy shipping capacity. NH3 can perform well (with modifications) in all prime movers. NH3 is safer than propane and as safe as gasoline in transportation fuel applications.

Freedom Car Targets w/ 2005 NH3 Comparison

Parameter (2005)	Units	2007	2010	2015	NH3
Spec. Energy	kWh/kg	1.5	2	3	3.0
Energy Density	kWh/L	1.2	1.5	2.7	2.7
Storage Cost	\$/kWh	6	4	2	2.1

NH₃ has historically cost less than gasoline (per million BTU) due to the fact that NH₃ is primarily made from coal and natural gas, both of which cost significantly less than petroleum per million BTU

The production of NH₃ is a great use for stranded natural gas since NH₃ can be shipped at a relatively low cost compared to LNG. NH₃ is much cheaper to store than LNG, CNG and especially hydrogen.

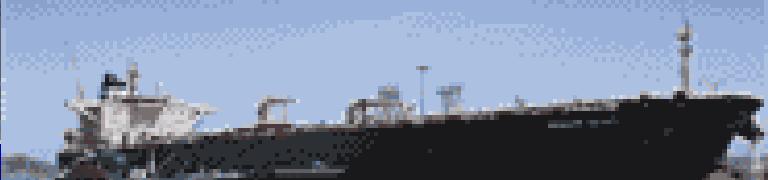
Future Compatibility

Hydrogen + Nitrogen

Ammonia

Storage & Delivery – Pipeline, Barge, Truck, Rail

Stationary Power


Fertilizer

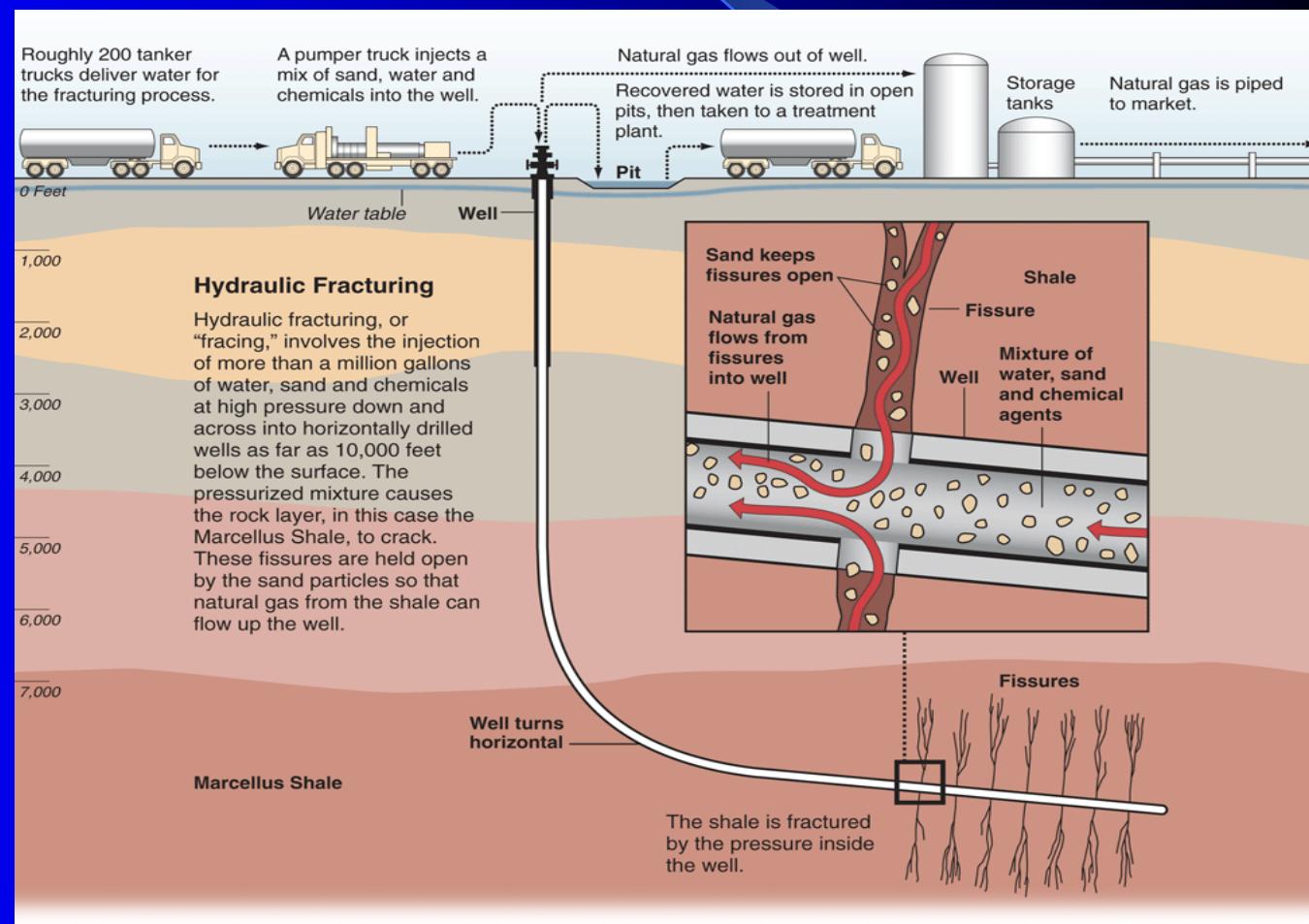
Transportation

Delivery Infrastructure

NH₃ is in the top three chemicals shipped worldwide.

Ammonia Storage & Transport

U.S. Ammonia Pipeline


Nearly
3000 Miles
Total

NH₃ vs. Natural Gas

Convert CH4 to NH3 at well head, sequester CO2 in natural gas well to extend well production. Use natural gas pipeline (with modifications) to deliver NH3.

1.5 times more energy capacity when transporting NH3 than CH4 for a given pipeline size
More efficient energy transport

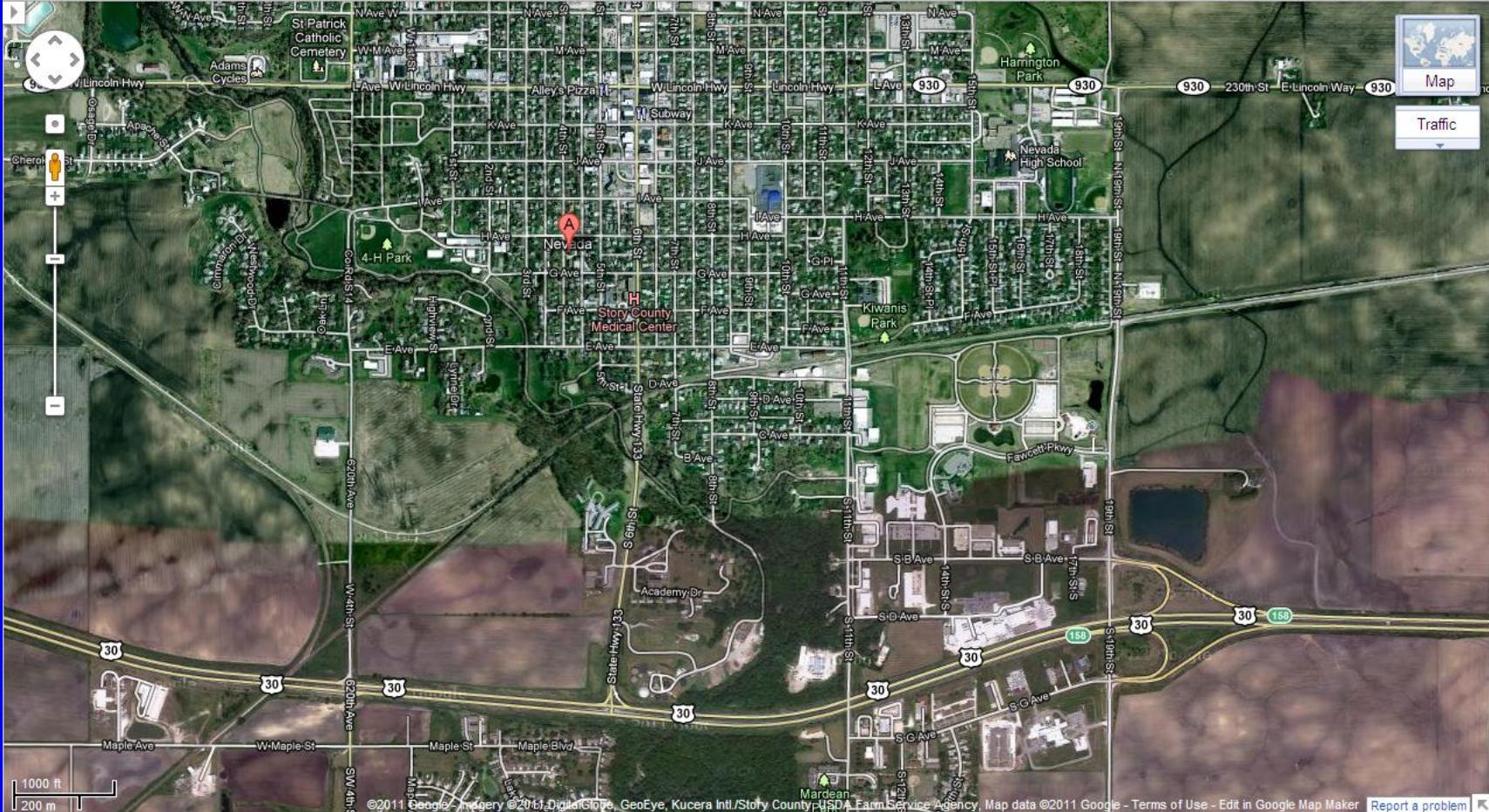
Natural Gas Pipelines

Iowa “Hydrogen” Refueling Stations

Over 800 retail ammonia (aka, the “Other Hydrogen”) outlets currently exist in Iowa.

Nevada, Iowa Retail NH3 Outlet

Web Images Videos **Maps** News Shopping Gmail more ▾


Sign in |

Google maps

Nevada, IA

Nevada, Iowa NH3 Retail Outlet

Web Images Videos **Maps** News Shopping Gmail more ▾

Sign in

Google maps

 Map

 Traffic

©2011 Google - Imagery ©2011 DigitalGlobe, GeoEye, Kucera
Map data ©2011 Google - Terms of Use - Edit in Google Map Maker Report a problem

Nevada, Iowa NH3 Retail Outlet

Web Images Videos **Maps** News Shopping Gmail more ▾

Sign in |

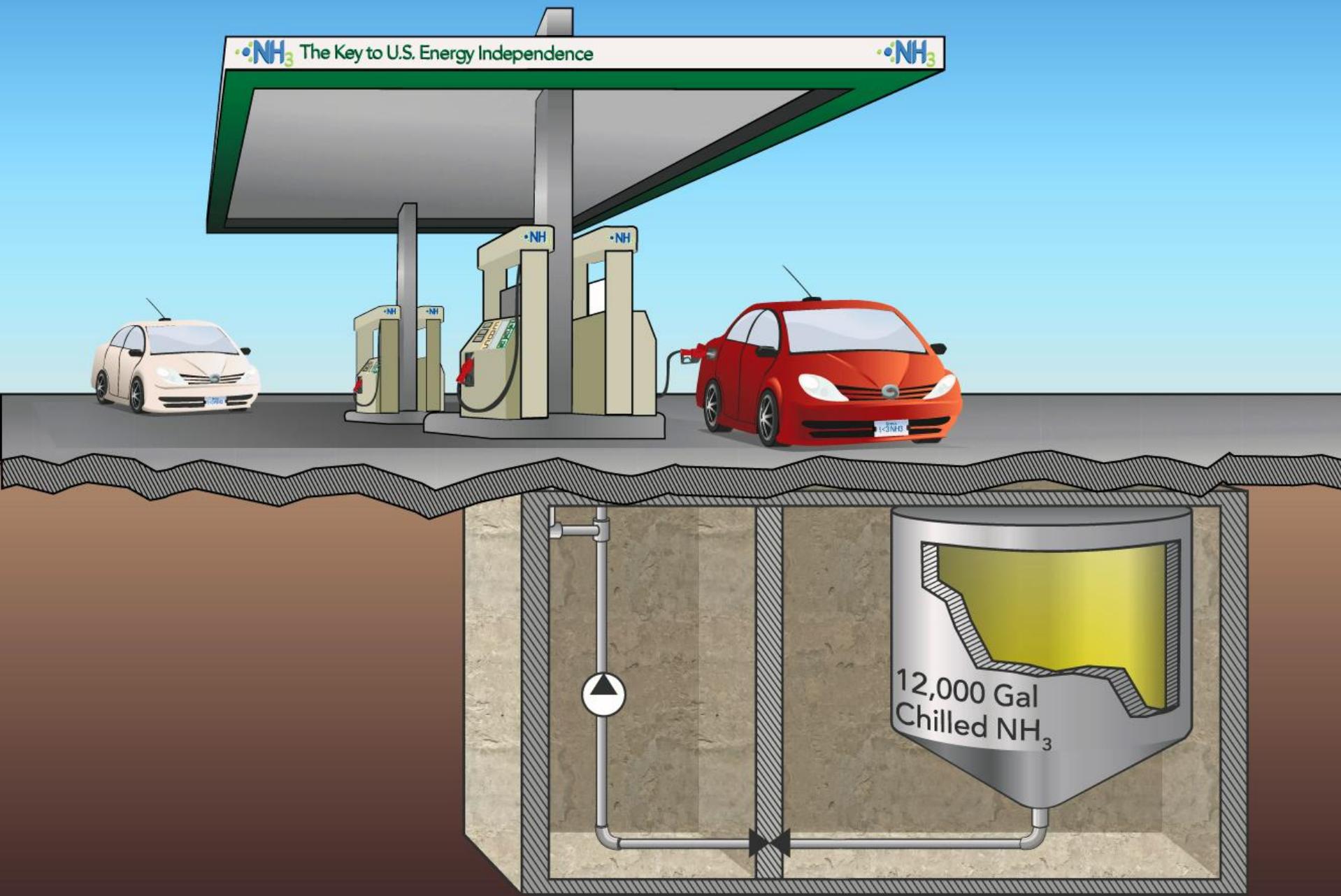
Google maps

Nevada, IA

Nevada, Iowa NH3 Retail Outlet

Web Images Videos **Maps** News Shopping Gmail more ▾

Sign in



Google maps

Nevada, IA

NH₃ Refueling Station

Safety

- NH3 is a common, naturally occurring chemical found in all animal life forms. It is not a carcinogen and is not a greenhouse gas.
- NH3 is safer than propane and as safe as gasoline when used as a transportation fuel.
- Iowa Energy Center funded comparative quantitative risk assessment (CQRA) study completed by March 2009, Quest Consultants Inc., Norman, Oklahoma
- “Safety assessment of NH3 as a transportation fuel”, Nijs Jan Duijm, Frank Markert, Jette Lundtang Paulsen, Riso National Laboratory, Denmark, February 2005
- NH3 plant operators
- NH3 safety is an engineering issue. It can be made to be as safe as is necessary.
- NH3 is classified by DOT as a non-flammable liquid and an inhalation hazard (not a poison)

Vehicle On-Board Storage

Properly designed, pressurized (250 psi rating) NH₃ vehicle fuel tanks can meet all international requirements for acceptable safety.

Scapegoat?

NH3

NH₃

Ephedrine and Pseudoephedrine

C₁₀H₁₅NO

Methamphetamine

C₁₀H₁₅N

VOC's + NOx + O₂ + Sunlight = ozone = smog+

NOx + H₂O + NH3 = ammonium nitrate = smog-

If the NOx doesn't form ammonium nitrate it goes to ozone (worse)

Fossil fuels (the source of NOx) are the problem, not NH3

NH3 is actually used to clean up NOx emmissions at coal plants

NH₃ Fertilizer Application

Anhydrous ammonia expands into a gas as it is injected into the soil where it rapidly combines with soil moisture.

See Clip

End Use Applications

- Spark-Ignition Internal-Combustion Engines
- Diesel Engines
- Direct Ammonia Fuel Cells
- Gas Turbines
- Gas Burners (including residential furnaces)

Economic Impacts

In 2008 U.S. gasoline prices were as low as \$1.50 per gallon. Current prices of over \$3.50 per gallon combined with annual transportation fuel consumption of approximately 200 billion gallons creates a current economic drain of \$400 billion from the non-transportation portion of the U.S. economy. The \$400 billion is equivalent to the combined annual sales of GM, Ford, Chrysler and all fast food in the U.S. This economic drain and the housing crisis are primary reasons for the current U.S. recession.

Summary 1

- **Ammonia meets critical DOE 2015 Freedom Car targets today**
- **Ammonia has a very extensive, worldwide transportation and storage infrastructure already in place. With relatively minor modifications, existing oil and natural gas pipelines could be converted to transport NH₃**
- **Only H₂ and NH₃ have ~zero tailpipe greenhouse gas emissions (with existing control technologies)**
- **Only H₂ and NH₃ can be made from electricity and water (+air for NH₃)**
- **Ammonia can replace diesel fuel, gasoline, natural gas and propane in most fuel-related applications**
- **NH₃ is a very hydrogen dense chemical, ~2x greater (volume basis) than 10k psi hydrogen. This results in outstanding green energy storage capability.**

Summary 2

- NH3 from coal and natural gas now
- NH3 from renewables and nuclear in the near future (Including wind, solar, OTE and hydro)
- NH3 diesel (CI) and spark-ignition (SI) engines now
- Direct NH3 fuel cells in the near future
- NH3 is not a poison! It is an very prevalent, naturally occurring chemical
- Any transportation fuel has associated safety risks but NH3 is as safe as gasoline and safer than propane according to two, highly-credible studies.
- NH3 looks very good now and in the future
- Hydrogen stored, delivered and utilized in the form of NH3 is the best choice for sustainable, cost-effective, near-term alternative transportation fuel.