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Outline 

• Why wind and NH3? 

– Energy storage for high penetrations of wind 

• Offshore basics 

• Baseline NH3 plant considerations 

• Economics 

– NH3 subsystems 

– Offshore wind 

• Case study in Gulf of Maine 
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Why Offshore Wind + Ammonia? 

Pipeline Source: Scheinberg, P. F. (1998). SURFACE TRANSPORTATION: Issues Associated With Pipeline Regulation by the Surface Transportation Board. Transportation Issues 
- Resources, and Economic Development Division. Washington, D.C., Government Accounting Office: 6. 
Wind Map: Musial, W. and B. Ram (2010). Large-Scale Offshore Wind Power in the United States. Golden, CO, National Renewable Energy Laboratory. 
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Conventional Energy Storage Options 
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Source: Electricity Storage Association (2009). "Power Quality, Power Supply." Retrieved February 9, 2011, from http://www.electricitystorage.org/ESA/technologies/. 

Ammonia 
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Offshore Wind Turbines 

• Turbine fundamentally 
the same as onshore 
– Foundations differ 

• Wind turbines that are 
placed in oceans, seas, 
lakes, etc. 

• Subjected to 
hydrodynamic loading 
– Waves 

– Currents 

 

 

Source: Van Der Temple, J. (2006). Design of Support Structures for Offshore Wind Turbines. Delft, The Netherlands, Technical University of Delft. PhD: 223. 

 
5 



  Mechanical and Industrial Engineering   Mechanical and Industrial Engineering 

Offshore Wind Considerations 

• Advantages 
– Large siting area 

– Load center 
proximity 

– High wind speeds 

– Low turbulence 

– Low wind shear 

– Low visual impact 

• Disadvantages 
– Access restrictions 

– Higher costs 

– Lower availability 

– Corrosion prevention 
 

 

 
Source: Barrow Offshore Wind Ltd. (2006). Barrow Offshore Wind Farm Construction Monitoring Report. Copenhagen, Denmark, DONG Energy: 45. 
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Offshore Wind Energy Production 

• Turbine losses 

– Betz limit  Cp (16/27) 

– Mechanical efficiency 

– Generator efficiency 

• Availability (> 95%) 

• Electrical efficiency 

• Array efficiency (90%+) 
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Sources: Jeppsson, J., P. E. Larsen, et al. (2008). Technical Description Lillgrund Wind Power Plant, Vattenfall: 78. 
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Producing Ammonia with Wind 

• All electric wind powered 
processes: 
– Air Separation (N2) 

– Electrolysis of water (H2) 
• Water purification 

– Haber-Bosch process 
• Extreme pressure and  

temperatures 
• Dissociation of N2 and H2  

– Iron Oxide Catalyst 

• Formation of NH3 

 

N2(g)+3H2(g)→2NH3(g) ∆H=-92kJ 

Sources:  
Dubey, M., F. Young, et al. (1977). Conversion and Storage of Wind Energy as Nitrogenous Fertilizer. Burbank, CA National Science Foundation: 1-300. 
Grundt, T. and K. Christiansen (1982). "Hydrogen by water electrolysis as basis for small scale ammonia production. A comparison with hydrocarbon based technologies." 
International Journal of Hydrogen Energy 7(3): 247-257. 
Dugger, G. L. and E. J. Francis (1977). "Design of an Ocean Thermal Energy Plant Ship to Produce Ammonia via Hydrogen." International Journal of Hydrogen Energy 2: 231-
249. 
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Ammonia Technical Requirements 
• Syngas  

– H to N ratio 3:1 (NH3) 

– Max Oxygen: 0.01 mol% in syngas 

– Pressure: 100-200 bar 

– Temperature: 350-550°C 

• Reaction 

– 20-30% conversion rate 

– Exothermic reaction ≈ 8% of energy input 
(industrial) 

• Availability > 90% 

– 5.7 shutdowns/year average 

• Near constant reactor output 

• Product: Anhydrous ammonia 

• Plant sizes 300 t/d to 3000 t/d 

 

 

 

Sources:  
Appl, M. (1999). Ammonia: Principles and Industrial Practice. New York, Wiley-VCH. 
Dybkjaer, I. (1995). Ammonia Production Processes. Ammonia Catalysis and Manufacture. A. Nielsen. New York, Springer-Verlag: 199-328. 
European Commission (2007). Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers. 
Integrated Pollution Prevention and Control. 
Bartels, J. R. and M. B. Pate (2008). A feasibility study of implementing an ammonia economy, Iowa State University. 
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Wind/NH3 300 t/d Plant Characteristics 
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Process  Product Amount Flow Rate 
(kg/h) 

Input Power 
(MW) 

Air Separation N2 245 tonnes 10200 2 

Electrolysis 

H2 

O2 

55 tonnes 
435 tonnes 

2300 
18125 

135 (AC) 

Desalination H2O 490 tonnes 20000 1.5 

Synthesis loop/ 
Compression 

NH3 300 tonnes 12500 9 

NH3 Reaction Heat 2.7 GJ/tonne - -9.4 



  Mechanical and Industrial Engineering   Mechanical and Industrial Engineering 

Subsystem Selection 

Process Selection Reason(s) 

Air Separation Cryogenic  
High purity product; high volume 

output; mature technology 

Electrolysis Alkaline 
High output; good load range; 

mature technology 
(Statoil Atmospheric Type 5040) 

Water Desalination 
Mechanical Vapor 

Compression 

Thermal system with possibility of 
heat integration; flexible with 

good load range; little pretreating 
required; high purity product 

needed for electrolysis 
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Bottom-Up Cost of New Electric NH3 Plant 

• Based on Turton et al. (2001) and Ulrich 
(1984) 

– Major equipment list for bare module cost 

• Equipment sizes from flow rates, heat transfer rates, 
etc. 

• Pressure and material factors 

– Total “Grass Roots” cost calculated ($2010) 

 

Sources: Turton, R., R. C. Bailie, et al. (2009). Analysis, Synthesis and Design of Chemical Processes. Boston, MA, Prentice Hall. 
Ulrich, G. D. (1984). A Guide to Chemical Engineering Process Design and Economics. New York, NY, John Wiley and Sons. 
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Equipment Costs 

• Equipment costs often not available 

• Estimates based on 

– Other known equipment costs (C1) 

– Scaling relationships  

– Cost inflation 

– Material factors (FM) 

– Pressure factors (FP) 
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Grass Roots Cost Estimate 

• Bare module cost (BM) = 
direct and indirect costs for 
a piece of carbon steel 
equipment at STP 

• Contingency fees and costs 
= 18% of BM 

• Site development, auxiliary  
buildings, off-sites and 
utilities = 50% of BM 
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Ammonia Synloop Equipment (300t/d) 

• Compressor train 
for syngas (1 bar-
150 bar) 

• Recirculating 
compressor 

• Flash vessel 

• 4 heat exchangers 

• Synthesis reactor 

• CGR = $32M ($2010) 

 

 

Source: Araujo, A. and S. Skogestad (2008). "Control structure design for the ammonia synthesis process." Computers and Chemical Engineering 32(12): 2920–2932. 
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Cost of Hydrogen Production 

• Electrolyzers provide all hydrogen 

– Ancillary equipment includes tanks, compressors, 
scrubbers, dryers 

• Analysis based on the DOE’s “H2A”  

– Includes quotes from Norsk Hydro (Now Statoil) 

– Costs include all necessary equipment for H2 
production ($2002) 

• CGR = $218M ($2010) 

 Source: Steward, D., T. Ramdsen, et al. (2008). H2A Production Model, Version 2 User Guide. Golden, CO, National Renewable Energy Laboratory: 69. 
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Cost of Air Separation Equipment 
• Based on proprietary 

spreadsheet and quotes 
courtesy of Universal 
Industrial Gases 

• Costs mostly from 
compressors and heat 
exchangers 

• $12M for a 250 t/d GN2 
plant ($2010) 

 

Source: Bian, S., M. a. Henson, et al. (2005). "Nonlinear State Estimation and Model Predictive Control of Nitrogen Purification Columns." Industrial & Engineering 
Chemistry Research 44(1): 153-167. 
http://www.chemsep.com/downloads/data/CScasebook_ASU.pdf  
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Mechanical Vapor Compression 

• Electrical compressor 

• Large heat exchanger 
(evaporator) 

• Preheaters and pumps 

• Specific energy: 0.7 kWh/m3 of 
H20 

• CGR = $21.7M ($2010) 

Source: El-Dessouky, H. T. and H. M. Ettouney (2002). Fundamentals of Salt Water Desalination. New York, Elsevier. 
Fiorenza, G., V. K. Sharma, et al. (2003). "Techno-economic evaluation of a solar powered water desalination plant." Energy conversion and management . 44 (Compendex): 2217-2240. 
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Ammonia Storage 

• 300 t/d plant 
requires 9000 t 
storage. 

• Sizing of 
compressors, etc 
dependent of heat 
transfer  

• CGR = $16M 
($2010) 

Source:Webb, D. "LARGE SCALE AMMONIA STORAGE AND HANDLING." Retrieved February 13, 2011, from www.irc.wisc.edu/file.php?id=21. 
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Offshore Wind Economics 

• Capital Costs 
– RNA Model  
– Support Structure 

• Tower 
• Foundation  
• Jacket 

– Electrical 

• Other Costs 
– O&M ≈ 2% of Cap Cost 
– Decommissioning ≈ 

$55,000/MW 
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Source: Morthorst, P. E., J. Lemming, et al. (2010). Development of Offshore Wind Power – Status and Perspectives. Offshore Wind Power. J. Twidell and G. Gaudiosi. 
Brentwood, Essex, UK, Multi-Science Publishing Co. Ltd.: 1-13. 
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Offshore Wind Costing Methods 

• Basic  $/kW for each system 

• Intermediate  cost ∝ amount of material 

– Empirical relationships 
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RNA 

Tower 

Pile 

Electrical 

Sources: Bulder, B. H., F. Hagg, et al. (2000). Dutch Offshore Wind Energy Converter - Task 12: Cost Comparisons of the Selected Components. Petten, The Netherlands, 
Energy Research Centre of the Netherlands: 40. 
Elkinton, C. N. (2007). Offshore Wind Farm Layout Optimization. Mechanical and Industrial Engineering. Amherst, MA, University of Massachusetts. Doctor of Philosophy: 
326. 
 
 



  Mechanical and Industrial Engineering   Mechanical and Industrial Engineering 

Depth/Distance Influence on Capital Costs 
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Source: 4C Offshore Limited (2010). "Global Offshore Wind Farms Database." Retrieved November 18, 2010, from http://www.4coffshore.com/offshorewind 
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Offshore Trends 
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Source: 4C Offshore Limited (2010). "Global Offshore Wind Farms Database." Retrieved November 18, 2010, from http://www.4coffshore.com/offshorewind 
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Case Study - Gulf of Maine 

Gulf of 
Maine 

Mount 
Desert 
Rock 

Cape 
Wind 

Source: http://maps.massgis.state.ma.us/map_ol/oliver.php 
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Wind at Mt. Desert Rock 

• 10 minute data taken at 
22.6 m 

• Mean wind speed 
estimate @ 90m = 9.47 
m/s 

• Standard Dev = 4.76 m/s 

• Nor’easter winds? 

 
 

 

 

Source: National Data Buoy Center (2011). "NBDC - Station MDRM1." Retrieved July 12, 2011, from http://www.ndbc.noaa.gov/station_page.php?station=mdrm1. 
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Baseline Offshore Wind-NH3 

• All electric, 300 t/d ammonia facility 

– Located on shore 

– 145 MW required 

– Grid backup – ISO-NE hourly sell data/Electric Power Monthly buy data 

• Offshore wind specifications 

– 10 meters deep, 10 km offshore, 10D spacing 

– 3 MW machines, 90m hub height, 100m diameter 

– Monopile substructure 

– 98 turbines (~200% of the required power) 

• Capital Costs: $768M for offshore wind; $290M for ammonia facility 

• Total O&M = $28.6M excluding utilities 
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Levelized Cost of Ammonia (LCOA) 

• Define the levelized cost as the sum of the 
capital costs and the O&M divided by the 
annual production ($/ton).  

– Primarily used in electricity markets 

– LCOA = ~$880/ton for conventional steam 
reforming plant 
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 Wind/NH3 as a Hybrid System 

• 10 minute 
energy/mass 
balance 

• System sizing 

– Offshore wind 

– ASU 

– Electrolysis 

• Formulate a control 
strategy 

– Load range 
dependent 

28 
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Gulf of Maine Simulation Example 
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Gulf of Maine Baseline Simulation 
Summary 

• Average Power = 117.65 MW 
• Capacity Factor = 0.40 
• Electricity Purchased = $24.6M 
• Electricity Sold = $18.54M 
• LCOA = $11315/ton (LCOA = ~$880/ton for 

conventional steam reforming plant) 
• Energy Required = 41.9 GJ/t 

– 8.02 GJ/t from the grid 
– 33.88 GJ/t from wind 

• Saves 85 ktons of CO2/y and 14 t NOx/y 

30 



  Mechanical and Industrial Engineering   Mechanical and Industrial Engineering 

Sensitivity Analysis, Baseline LCOA = $11,315/ton   
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Conclusions 

• High penetrations of offshore wind require 
large scale storage – ammonia. 

• Industrial scale wind powered ammonia is 
possible, but grid backup is required. 

• Levelized cost is high relative to modern 
industrial NG ammonia plants. 
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Questions? 
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Sources: Dugger, G. L. and E. J. Francis (1977). "Design of an Ocean Thermal Energy Plant Ship to Produce Ammonia via Hydrogen." International Journal of Hydrogen 
Energy 2: 231-249. 
Heronemus, W. E. (1972). Pollution-Free Energy from Offshore Winds. 8th Annual Conference and Exposition, Washington, DC, Marine Technology Society. 
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Appendix 
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