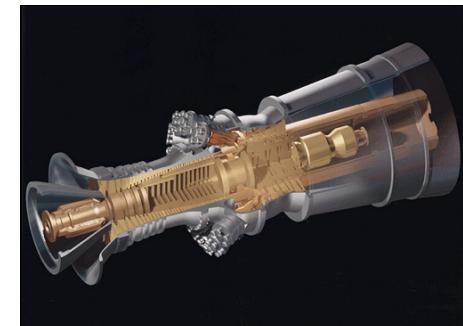



## NH<sub>3</sub> Fuel Conference 2013



NH<sub>3</sub> ammonia




# Ammonia Based Fuels For Environmentally Friendly Power Generation



**Arif Karabeyoglu**  
Space Propulsion Group, Inc.  
KOC University  
and  
**Brian Evans**  
Space Propulsion Group, Inc.

**September 24, 2013**



## Why Electricity Generation?

# NH3 Fuel Conference – September 2013

## Transportation vs Electricity Generation

Due to its high hydrogen density, ammonia has been studied as transportation system fuel extensively

“DOE does not plan to fund R&D to improve ammonia fuel processing technologies for on-board use on **light weight vehicles** at the present time”

Ref: *Potential Roles of Ammonia in Hydrogen Economy, DOE Report, Feb 2006.*

The following are quoted as the main reasons

- Safety – toxicity
- Ammonia cracking issues: start up, efficiency, conversion rate
- Storage: Lack of light, compact and robust storage tanks

|                         | Transportation                    | Electricity Generation              |
|-------------------------|-----------------------------------|-------------------------------------|
| Safety                  | Very critical                     | Not as critical                     |
| Cracking                | Cracking reactors heavy/expensive | Easily done                         |
| Storage tank weight     | Critical                          | Not an issue                        |
| Storage tank robustness | Need to be “Indestructible”       | Existing storage tanks are suitable |
| Distribution            | Complicated                       | Relatively simple                   |
| Start up                | Problematic                       | Not many start ups                  |
| Operational             | Pumps operated by unprofessionals | Delivered/handled by trained pers.  |

Major shortcomings of ammonia for transportation systems are NOT relevant to electricity generation

## Why Gas Turbines?

# NH3 Fuel Conference – September 2013

## Gas Turbine Power Generation

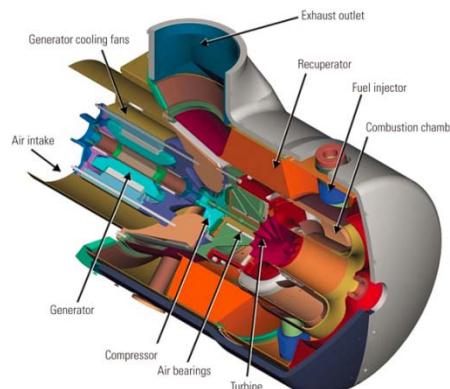
### Older plants are rapidly being displaced by gas turbine power generators

- Gas turbines supplied 15% of US power generation in 1998.
- Portion will be 39% by 2020.
- Of new demand 81% is for gas turbine power.
- Market is ~ \$10 billion. About 700 to 800 new units sold per year.



### Engine Types in Use

- Heavy duty gas turbines - centralized power production, 30 to 500 MW.
- Lightweight gas turbines - derived from aircraft engines, generally less than 60 MW.
- Micro gas turbines - distributed power, less than 5 MW


### Why Gas Turbines?

- High efficiency - Up to 60% with steam co-generation.
- Low emissions - NOx < 10 ppm.
- Low installed cost - 25,000 hr maintenance interval.
- Multi-fuel capability - Natural gas (methane) is fuel of choice when available. Fuel transition while running

## One of the Applications

# NH3 Fuel Conference – September 2013

## Applications – Small Scale



### NH3 Production

- Small scale NH3 production units based on electrolysis are currently available
- These can be converted to mobile systems
- If SSAS technology is developed successfully, efficient, cost effective and compact units can be manufactured
- NH3 can also be produced from HC feed stocks

### NH3 Fuel

- NH3 can be easily and safely stored
- Gas turbines can be used to generate electricity
  - Microturbines: 30 kW-200 kW
  - Aerobased: 10 MW
- Exhaust gas can be used for heating
- Eventually NH3 can be used in mobile applications

## Background Ammonia Fired Turbines

# NH3 Fuel Conference – September 2013

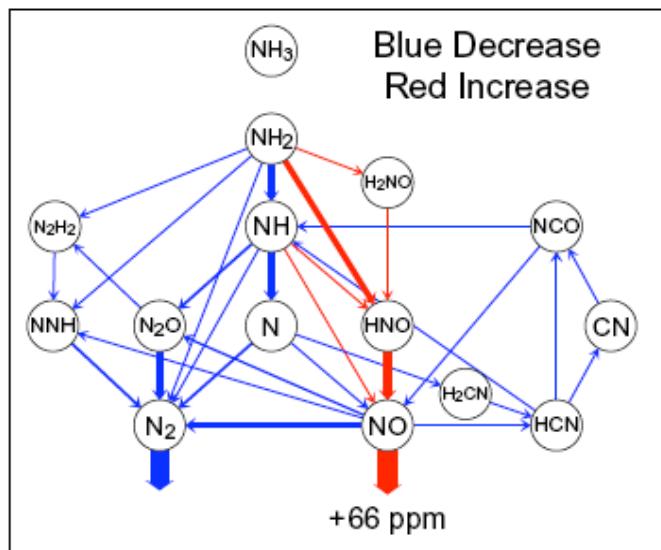
## Gas Turbine Power Generation – Fuels Comparison

| Fuel    | Fuel/air ratio* | Tcombuster* K<br>at 20atm | Texhaust K<br>at 1 atm | Enthalpy<br>change (work)<br>kJ/kg |
|---------|-----------------|---------------------------|------------------------|------------------------------------|
| Methane | 0.058           | 2277                      | 1260                   | 1551                               |
| JP-4    | 0.068           | 2342                      | 1313                   | 1539                               |
| Ethanol | 0.111           | 2295                      | 1289                   | 1546                               |
| NH3     | 0.164           | 2092                      | 1114                   | 1549                               |

\* Stoichiometric fuel/air combustion at a pressure ratio of 20:1

- NH3 requires higher fuel mass flow rate
- NH3 generates the same work output at lower temperature
- Or NH3 generates more power at the same temperature

# NH<sub>3</sub> Fuel Conference – September 2013


## Past Experience with Ammonia Fueled Gas Turbines

### History

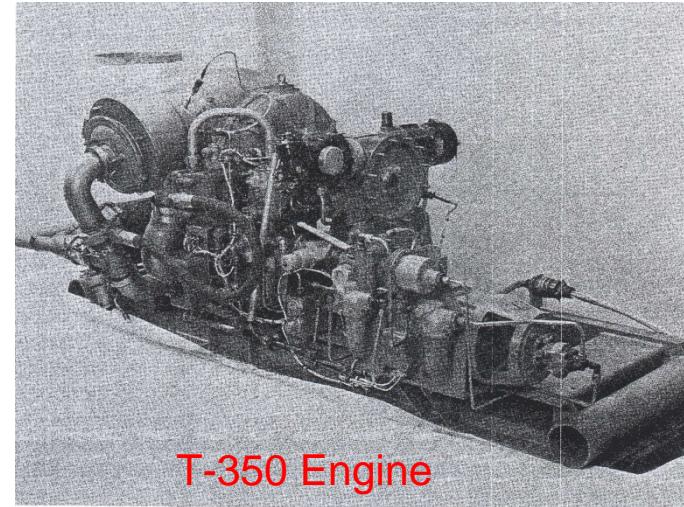
- Ammonia as a turbojet engine fuel has been tested in 1960's
- At least two DoD programs (reports available)
- Some recent research activity in University of Florida
- No active programs as far as we know

### Lessons Learned

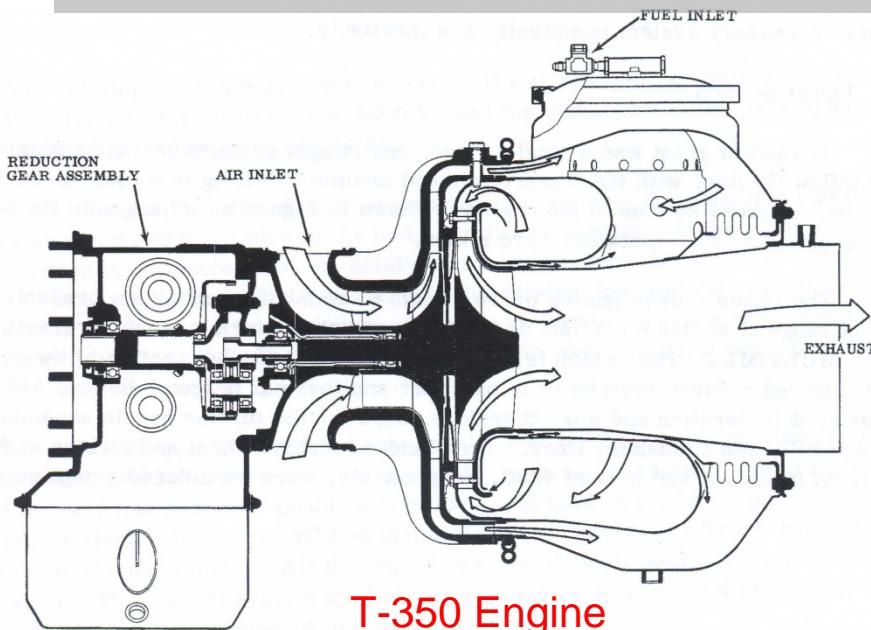
- Ammonia is a satisfactory substitute for hydrocarbon fuels in a gas turbine engine
- Complexity and cost of engines using ammonia vapor combustors will NOT be significantly greater than existing hydrocarbon engines
- Use of ammonia would also lead to reduction of NOx emissions ?



Oxidation chemistry of ammonia is well established


### Technical Challenges

- Low flame temperatures and slow kinetics results in challenges with pure ammonia in a turbojet combustor
- Stable efficient combustion with liquid NH<sub>3</sub> is problematic. Additives would help with this issue
- The DoD programs concluded that ammonia in the vapor phase can be burned in a turbojet combustor. This requires a heat exchanger to vaporize the ammonia
- Cracking helps flame stability


# NH<sub>3</sub> Fuel Conference – September 2013

## Past Experience with Ammonia Fueled Gas Turbines

- Investigations have been conducted by Solar Company and UC Berkeley in the 60's
- Solar used its 250 HP model T-350 single can burner engine.
- UC Berkeley studies were limited to subscale combustors
- Performance of the T-350 engine with ammonia is compared to the performance with JP-4
- Tests were limited to ammonia in vapor phase



T-350 Engine



### Some Observations

- Both vapor and catalyst combustors have been tested.
- Using ammonia at 2.35 times the HC fuels resulted in cooler turbine inlet temperatures at a given power.
- When the turbine inlet temperatures are matched, the ammonia engine resulted in a power increase of 10-20%.
- Efficiencies were high with the ammonia combustors.

## Development Path

# NH3 Fuel Conference – September 2013

## SPG/MADA's Core Competence

### SPG/MADA personnel have broad experience in

- Combustion, thermochemistry of fuels, design and analysis of gas turbines
- Testing of gas turbine engines and rocket motor systems
- SPG is an experienced DoD contractor (DCAA approved accounting system etc...)



We have access to several J79 and J85 engines and all test equipment from the RASCAL program



### SPG/MADA's capabilities include

- Laboratory testing of fuel properties
- Testing of turbojet engines (AEROTEC test facility in Butte Montana)

# NH3 Fuel Conference – September 2013

## Development - Program Elements

### Phase I – Feasibility (Funded by SPG IR&D Funds and Montana Board of Research and Commercialization Technology)

- Objective: Evaluate the feasibility and economical/technical viability of the concept
- Conduct feasibility studies: Modeling of ammonia combustion, testing in combustors and design of fuel nozzle for microturbines and J79 engine

### Phase II – Technology Development

- Objective: Develop the necessary technologies to implement the concept
- Work includes: Fuel formulation and laboratory testing, engine cycle analysis, extensive engine testing (using engines C200 and J79 – two exist in the AEROTEC facility), development of fuel conditioning systems, coordinate with NH3 plant manufacturers

### Phase III – Pilot Plant

- Objective: Implement the concept on a small gas turbine power generation plant
- Work includes: Conversion of the existing facility to an ammonia fired gas turbine, evaluation of the economical viability of the concept
- Partner with DoD

### Phase IV – Implementation

- Objective: Convert existing gas turbine power generation facilities to burn ammonia and develop new ammonia-fired gas turbines if necessary
- Partner with a gas turbine producer

# NH3 Fuel Conference – September 2013

## Phase I Progress – Developed of Test Set up

- Test rig designed to simulate gas turbine combustor conditions
- Bleed air from a J-79 turbofan engine supplies high pressure, hot air for combustion
  - Air flow rates of  $>8.0$  kg/s can be achieved
- At full thrust, an NH3 mass flow rate of 0.690 kg/s required for stoichiometric mixture
- NH3 vapor is pulled from the run tank and mixed with N2/H2 to simulate cracking
- Extent of simulated cracking is precisely controlled



# NH3 Fuel Conference – September 2013

## Phase I Progress – NH3 Test Setup

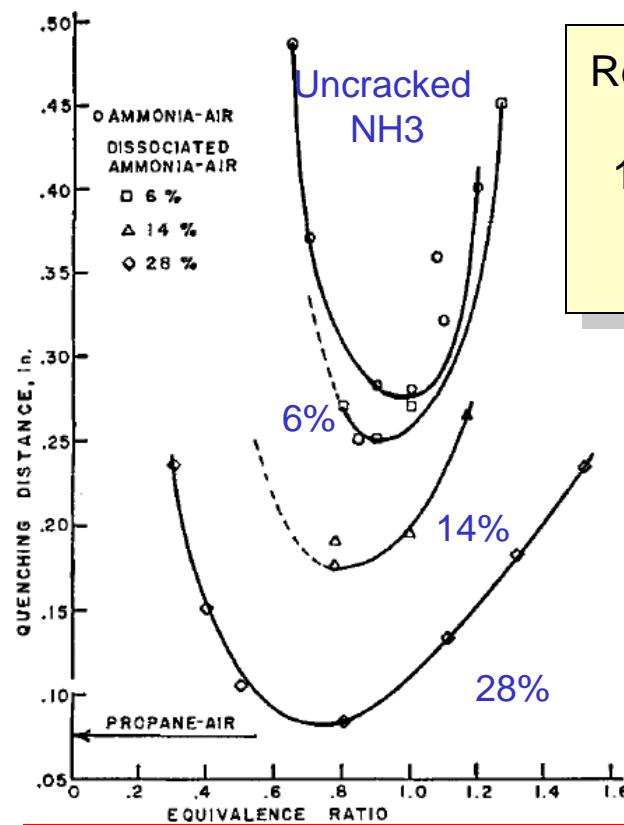


- Primary Measurements
  - Flow rates
  - Pressures
  - Temperatures
  - NOx
- 3 kHz sampling rate



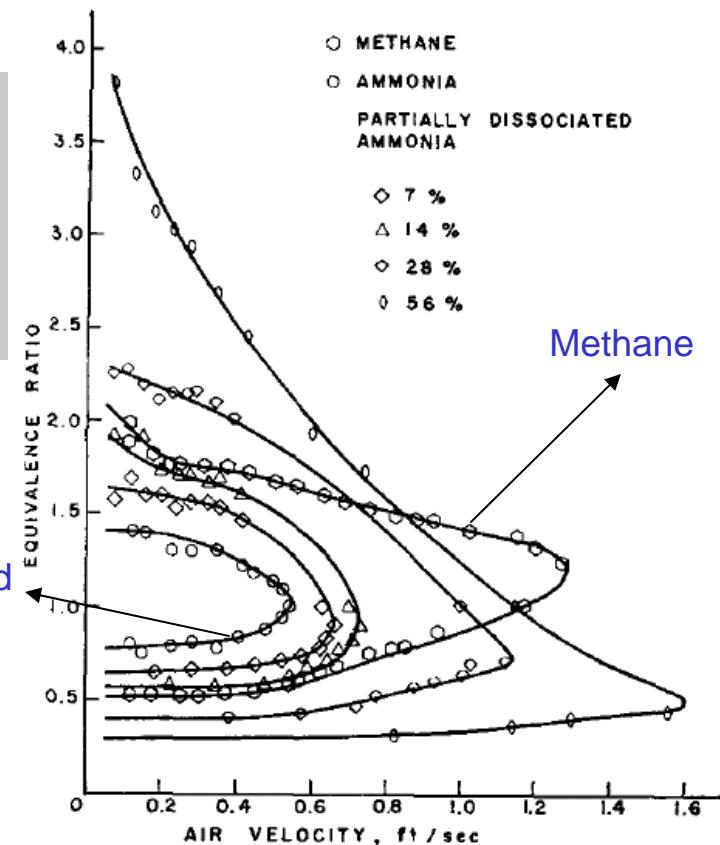
# NH3 Fuel Conference – September 2013

## Phase I Progress – Achievements


### Achievements to Date

- Developed a facility to test ammonia combustors
- Achieved self sustained combustion with ammonia in a simulated gas turbine combustor
- Developed a combustor configuration suitable for burning ammonia
- Successfully simulated cracking
- Developed expertise in the safety of ammonia
- Developed operational experience with ammonia
- Designed a facility to burn ammonia using existing C200 microturbines
- Developed a technology to crack ammonia in a cost effective and efficient way

## Cracking Technologies


# NH<sub>3</sub> Fuel Conference – September 2013

## Why Crack?

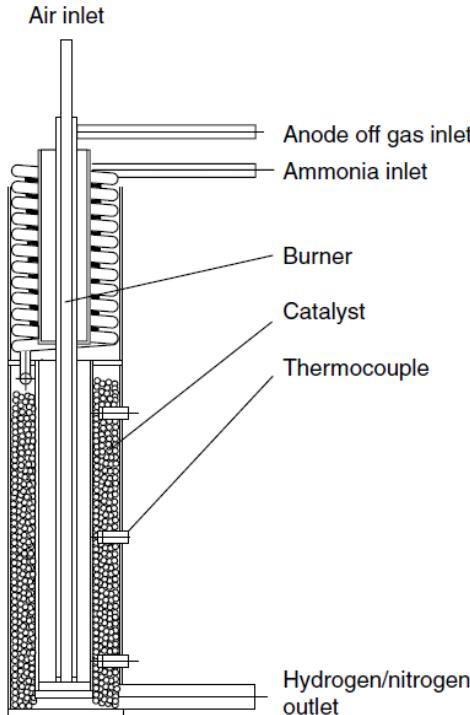


Ref: Vercamp, Hardin  
and Williams  
11<sup>th</sup> Symposium on  
Combustion  
1967

Uncracked  
NH3



Methane


- Uncracked NH<sub>3</sub>: Slow flame speed, large ignition energy, large quenching distance, poor flame stability
- Cracking is needed for 1) stability, 2) efficiency, 3) Low NO<sub>x</sub> emissions and 4) good power loading

# NH<sub>3</sub> Fuel Conference – September 2013

## Fuel Conditioning: Partial Cracking of Ammonia

### Autothermal Reformation of Ammonia

- These are designed for fuel cell applications
- Not suitable to gas turbines requiring high flow rate and small conversion rates



Ammonia cracker devised by  
Apollo Energy Systems

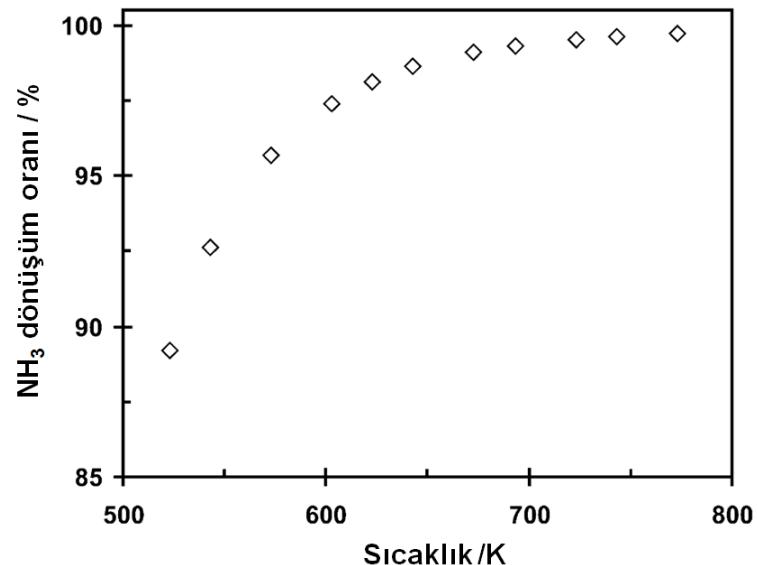
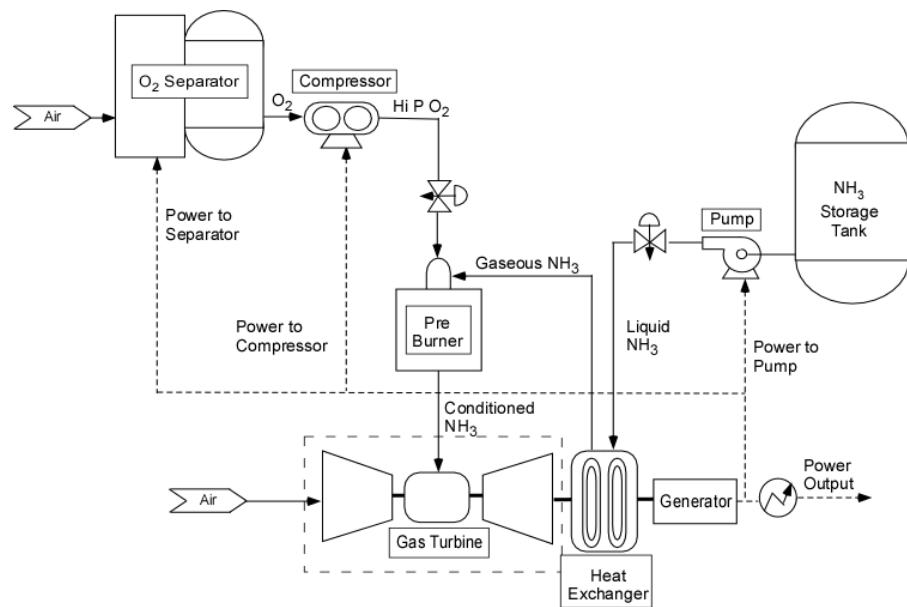
### Off-the Shelf Crackers

- Thermal cracking method
- High temperature catalysts (800-900 C)
  - Expensive
  - Short life
- Large quantities of electric energy
- Heat losses
- Slow start up



**Improved crackers:**  
Combustion with air over  
a catalyst bed

# NH<sub>3</sub> Fuel Conference – September 2013



## Fuel Conditioning: Research

### Pre-burner with O<sub>2</sub>

- Pursued by SPG
- Have small liquid rocket engine operating fuel rich
- Generate O<sub>2</sub> if not available on site
- Pre-burn with NH<sub>3</sub>
- Energy efficient process
- Not funded

### Development of Low Temperature-Cost Effective Crackers

- Pursued by KOC University
- Working with a catalyst expert
- Well equipped University lab. available for development
- Possible funding: Turkish government



**Thank You!**