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Non-thermal plasma (NTP)

» Electrically energized matter in a gaseous state and
generated through electrical discharge

» NTP species include: energetic electrons, ions, atoms
and molecules, highly reactive radicals, and quanta of
electromagnetic radiation (photons)

» Types of non-thermal plasma:
Microwave-induced plasma (MIP),
Dielectric barrier discharge (DBD) plasma,

Gliding arc discharge plasma, etc.

Conrads & Schmidt, 2000;
C. Liu, Brown, & Meenan, 2006;
Schutze et al., 1998;

Wang et al, 2011;




Uses of non-thermal plasma (NTP)

» Gas pollutant treatment

» Biomedical applications

(blood coagulation, wound and tissue sterilization)

» A potential alternative to the high temperature and pressure method for the
synthesis of many chemicals

(methane, isooctane, etc.)

» Can also be suitable for ammonia synthesis




Background: Earlier NTP reactors for
NH3 synthesis

» 1980’s to 1990’s: glow DC arc discharge, microwave discharge

» Operated under low pressure (5 to 10 Torr)

» Early 2000’s: rectangular shaped DBD
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Background: Earlier NTP reactors for NH3
synthesis

» Cascaded arc plasma ammonia synthesis

» Operated under vacuum conditions (0.37 Torr)

» Semi-continuous operation

» Rectangular micron meter (gap) dielectric barrier discharge (DBD)
reactors

» Operated under atmospheric pressure

» Continuous operation
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Background: Using microwave plasma reactors and using
ferroelectric material for NH3 synthesis

. . : » Use ferroelectric material to produce dis
» Achieved microwave discharge

plasma at atmospheric pressure in stead of dielectric barrier
» Continuous operation » Operated under atmospheric pressure
» Temperature: 516 C to 966 C » Temperature: ~50 C

» Continuous operation
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Background: Using tubular NTP reactors for NH3
synthesis

» Tubular-shape NTP reactors has better energy efficiency than the other
systems

» Operated under atmospheric pressure
» Temperature: ~120 C
» Continuous operation

» Various catalysts were used
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NTP for ammonia synthesis

» No fossil fuels ]
Key reactions:

» Low capital cost

N¥ +H,  -> NH* +H
N +H ->  NpH*

N,H* +e -> NH + N
MJ/mol N+H -> NH

NH+H -> NH,

NH +H, -> NH;

» Less land use NH +2H -> NH;

NH, +H -> NH;

» NTP N-fixation has a theoretical efficiency floor of 0.2

MJ/mol, which is more efficient than the HB method of 0.48

» A continuous process at atmospheric pressure

Can be co-located with end users (save transporation and

storage cost)

More suitable for the distributed ammonia production in

local farms




Current progress: Experimental setup
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Advantages of DBD plasma

» Low operational/maintenance cost

» Greater accessibility of broad operation pressure

» Arecent comparison between the DBD plasma and microwave-induced argon
plasma showed that DBD plasma generates higher electron density and atomic
oxygen concentration with less temperature increase.

High Voltage Electrode

—Dielectric Barrier Conrads & Schmidt, 2000;

High C. Liu, Brown, & Meenan, 2006;
Voltage A.C. _ Schutze et al., 1998;
& —NDischarge Wang et al, 2011;
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Florian et al., 2015).
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Photographs of the system




Catalyst development

» Three important factors:
1.  With or without catalyst?

2. Catalyst shape (Disks, wires, powders, pallets)
3. Catalyst type
- Mono: Al203, MgO, Cu

- Catalyst-support: (Ru on Al203, Ru on MgO, Diamon-like carbon
on Al203)

**Transitional metalsincluding Fe, Co, Cu and Ni demonstrated relatively hig
activitiesduring plasma-assisted ammoniadecomposition. (L. Wang et al




Catalyst development

Catalyst type Catalyst Greatest energy Reference

efficiency

Mono catalyst Ca0 AL0;; Disks Little tono glow DC arc (Batch) (Sugiyamaetal.,
WO;, and Si0,-Al,0; ammonia detected 1986)

for AL,0;,

WO;, and Si0O,-Al,0,
Mono catalyst Iron and molybdenum Wires 0.078 g/kWh** Microwave (Tanaka et al., 1994;
Uyama et al., 1993)

Mono catalyst MgO Powders N/A Reactangular (Mingdong Bai et al.,

2000)
Mono catalyst MgO and glass Pallets  N/A Tubular (Hong et al., 2014)
spheres
Mono catalyst Lead zirconate Pallets 0.9 g/kWh ferroelectric discharge (Gomez-Ramirez et
titanate, BaTiO3 al., 2015)

e



Catalyst development

Catalyst type

Catalyst-support

Catalyst-support

Catalyst Catalyst|Greatest |Reactor

efficiency

Ru/ Alumina Powders 0.34 Tubular DBD
g/kWh**
(5.5E-9
mol/J)
Nanodiamonds and Sphere 0.16 Tubular DBD
diamond-like powders g/kWh

carbon coated
Al203

Reference

(Mizushima et al.,
2004)

(Hong et al., 2016)



Catalyst development

Catalyst Catalyst |Greatest Reactors Reference

energy

efficiency

No catalyst N/A N/A Rectangular DBD (Mindong Bai et al.,
2008)
No catalyst N/A 0.78 Tubular microwave (Nakajima &
g/kWh** Sekiguchi, 2008)
No catalyst N/A 1.16 g/kWh Tubular DBD (plasma (Kubota et al., 2010)

(Including  activated nitrogen with
HNOx water)

species)




Multifunctional catalyst: catalyst, promoter,

and support

» Supported with non-conductive mesoporous structure
» Ruthenium catalyst and Cs, Ba promoters

» BET surface area Si-MCM-41 are in the range of 600 to 1000
m2/¢g, while the Ru deposited MgO catalyst are
approximately 100 m2/g

Non-conductive catalysts: increase stability and reduce
catalyst shielding effects

Catalyst preparation: Liquid impregnation -> Calcination ->
Reduction in hydrogen environment
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Catalyst characterization

PiFM
High

SEM, TEM, and AFM and
Photo induced Force
Microscopy (P1IFM) were taken

Pores in the material are mainly
from 10 to 50 nm.

The ruthenium particles could
be deposited both inside and
outside of the pores of the Si-
MCM-41 support.

After calcination, the catalyst
particle sizes are around 0.5
um



Elemental mapping

Ruthenium particles are less
uniformly distributed than the
promoters.

» The inorganic salts form solution
during the impregnation process
while the Ru forms suspensi



X-ray diffraction

XRD calcined

120

100

ZOWWM
0

2 4 6 8 10 10 20 30 40 50 60
degrees 2-theta degrees 2-theta

®
o

intensity (a.u.)
2}
o

IN
o

200 XRD reduced 120

100

20 30 40 50 60
degrees 2-theta

intensity (a.u.)
[} o]
o o

s
o

N
o

o

4 8 10

-
o

6
degrees 2-theta

» The catalystis amorphous

» Slight decrease in the intensity of the peak\with

2-theta value of around 2 shows that although
slightly destroyed and deformed from the Ri
complex, the pore shape within the S1-MC
structure 1s largely retained after calcination
H2 reduction

Ru in the reduced catalyst replaces Ru203 1
calcined catalyst



Results

>

The temperature range of the experiments were between 100 °C to 150 °C, which
was far less than the temperature required for the Haber Bosch process.

Ru catalyst and promoters can lead to approximately 3 times increase of the
synthesis efficiency to the process.

Since the plasma synthesis reaction is a rapid process, it is reasonable that the
higher flow rate leads to greater amount of ammonia produced, and therefore

greater synthesis efficiency.
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Results

» Highest energy efficiency: 1.7 g NH3/kWh Achieved at 5000V and 26,000 Hz
» The resonance effect of the dielectric barrier discharge can contribute to the
homogeneity of the discharge, which can further increase synthesis efficiency at
higher frequency conditions
» Optimum gas flow rates: N2:H2=3:1 for MgO support, and 1:1 for mesoporous
supportS (Peng et al. Plasma Chemistry and Plasma Processing, 2016)
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Conclusions and future plan

>

|ldentified key factors for this project:
1. Specific energy input
2. Catalyst selection and its synergistic effects with plasma
3. Prevention of back reactions
Greatest energy efficiency achieved so faris 1.7 g/kWh at 0.05% N,

Higher frequencies helps increase efficiency for the tubular reactors
and catalyst used for the current study

Results needs to be improved to be comparable with the HB process

Investigate to avoid or reduce the decomposition of ammonia after
being synthesized
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