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• To protect against global warming, a massive influx of renewable energy is expected. 

• Although hydrogen is a renewable media, its storage and transportation in large quantity 

has some problems. 

• Ammonia, however, is a hydrogen energy carrier and carbon-free fuel, and its storage and 

transportation technology is already established.

• As ammonia utilization, ammonia combustion and ammonia fuel cell are expected. 
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SL of NH3-air laminar premixed flame 

(Hayakawa,2015)

NH3-air combustion

• NH3-air combustion is difficult because the laminar burning velocity is much lower than that 

of conventional hydrocarbon fuels.

• In 1967, Pratt examined an NH3-fired gas-turbine combustor, and concluded that 

combustion efficiencies were unacceptably low.

• Verkamp showed that the pre-cracking of NH3 and the additives improved the flame stability

• Because of those difficulties, the research and development of NH3-fueled gas turbines were

abandoned, and it has not been retried until recently.
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Recent work of NH3 fueled gas turbine

• Recent demand for hydrogen energy carrier revives the interest of NH3 fuel.

• Evans proposed NH3-air combustion gas turbine using pre-cracked NH3.

• Valera tested NH3-CH4-air gas turbine combustors.

• AIST successfully performed ammonia-kerosene co-fired gas turbine power generation in 

2014, and ammonia-fired gas turbine power generation in 2015. 

• AIST plans developing a low NOx combustor using combustor test rig.

• Since emission characteristics of test rig combustor differ from that of gas turbine, emission 

data of gas turbine re-characterized with the other parameters is needed.

4

NH3-kerosene-air micro gas turbine in our 

institute (AIST)NH3-air combustion gas turbine (Evans, 2013)



Emissions of NH3 and NOx

• In the case of NH3-air combustion, most products are N2 and H2O. 

• Small amounts of NH3 and NO are detected as pollutant emissions. 

• If the emission of unburnt NH3 increases, combustion efficiency decreases; this is 

prone to occur because the laminar burning velocity of NH3-air pre-mixture is very 

low. Combustion efficiency had been unacceptably low in the 1960s.

• In order to improve combustion efficiency, unburnt NH3 must be minimized. 

• The emission of NOx is thought to increase because NH3 is the source of fuel-NO. 

• A small amount of NH3 has been used for additives to study combustion chemistry 

of NOx formation.
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Regenerator-heated gas turbine

• Micro gas turbines utilize a regenerative heat exchanger to improve the thermal 

efficiency of the gas turbine cycle. 

• Regenerative heat exchangers transfer exhaust heat after the turbine into combustion 

air after the compressor. 

• Thus, the combustor inlet temperature increases to around 500 °C. 

• This high combustor inlet temperature enhances the flame stability of NH3-air 

combustion and reduces the unburnt NH3.
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Fig.    Heat-regenerative-cycle gas turbine



Combustor
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• A diffusion-type combustor was employed with the expectation of 

realizing a higher flame stability.

• NH3 gas was injected from 12 holes located around the kerosene 

injector, and an air swirler was positioned around the NH3 gas-injection 

holes.

Prototype NH3 fueled gas turbine combustor
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Emission after SCR

• NOx reduction equipment using SCR was placed after the micro gas turbine. 

• The NH3 addition to the SCR for NOx reduction was carried out in the piping, after the 

micro gas turbine combustor. 

• Although NOx emission after the micro gas turbine combustor is sufficiently high, the 

SCR NOx reduction equipment can reduce it below the regulation limit
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Fig.   NOx emission after the SCR



Combustion emissions from gas turbine

• Although NOx emission after SCR is below the regulation limit, the NOx 

emission from a micro gas turbine combustor is so high that it requires a 

large-size SCR. 

• If a low NOx combustion method is developed, the size of the facility could 

be reduced. 

• In order to achieve low NOx combustion, a combustor test rig was built in 

the same place with a common NH3 fuel supply facility. 

• Meanwhile, in the gas turbine, the results arise from the restriction of the 

eigen balance of fuel, air, and heat, because the compressor and turbine 

are connected by a single shaft. 

• It is difficult to characterize combustion emissions from the combustor test 

rig with the former parameters because there is no restriction of the quantity 

of fuel, air, and combustor inlet temperature. 

• Thus, this paper reports combustion emissions of the NH3 fuel gas turbine 

before SCR, re-characterized with the other parameters, such as fuel flow 

rate, overall equivalence ratio, combustor pressure, and combustion 

temperature.
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Eigen balance of fuel and air

• Meanwhile, in the gas turbine, the results arise from the restriction of the eigen

balance of fuel, air, and heat, because the compressor and turbine are connected by 

a single shaft. 

• It is difficult to characterize combustion emissions from the combustor test rig with 

the former parameters because there is no restriction of the quantity of fuel, air, and 

combustor inlet temperature. 
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Former reports on emissions 

• In the case of NH3-air combustion, the NH3 and NO emissions strongly 

depend on the combustor inlet temperature.

• In the case of CH4-NH3-air combustion, the emissions depend on the NH3

ratio. 
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NO2 and N2O emissions

• The global warming potential (GWP) of N2O is 298, and thus, N2O emission 

needs to be minimized.

• The N2O emission decreases with increase of combustor inlet temperature, 

i.e., electric power output, and stays below 46 ppm at a combustor inlet 

temperature of 560 °C.
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Combustion emissions re-characterized 

with the other parameters

• The emissions of NO and NH3 characterized by the fuel flow rate show one set of 

emission pattern repeated in three heat input ranges. 

• The overall equivalence ratio for 70000, 75000, and 80000 rpm were in the range 

0.107–0.137, 0.117–0.157, and 0.132–0.142, respectively, which have overlaps.

• It is shown that the equivalence ratio alone does not determine the combustion 

emissions. 
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Combustion emissions re-characterized 

with the other parameters

• The combustor pressures for 70000, 75000, and 80000 rpm were in the range 285–292, 327–

337, and 369–371 kPa abs, respectively. 

• It shows one set of emission patterns repeated in three pressure ranges. 

• The temperature of the combustor liner is dependent upon the temperatures of the combustor 

inlet and combustion. 

• Although the dependency is most apparent in the former reports on emissions, it arises from the 

eigen balance of fuel, air, and heat. 

• It is expected that the accuracy of the results can be improved in the future combustor rig tests.

15

0

500

1000

1500

2000

2500

3000

250 300 350 400 450

ow70000rpm

ow75000rpm

ow80000rpm

ow70000rpm

ow75000rpm

ow80000rpm

Combustor pressure abs [kPa]

N
H

3
, 

N
O

 (
1
6
%

O
2
) 

[p
p
m

]
NH3

NO

Combustor with observation window (ow)

NH3-air combustion

0

500

1000

1500

2000

2500

3000

600 700 800 900

ow70000rpm

ow75000rpm

ow80000rpm

ow70000rpm

ow75000rpm
ow80000rpm

Combustor liner temperature [℃]

N
H

3
, 

N
O

 (
1

6
%

O
2
) 

[p
p

m
]

NO

NH3

Combustor with observation window (ow)

NH3-air combustion



Acknowledgement

• This work was supported by the Council for Science, Technology and Innovation (CSTI), the 

Cross-ministerial Strategic Innovation Promotion Program (SIP), “Energy Carriers” (Funding 

agency: Japan Science and Technology Agency (JST)). 

• The authors also thank “Toyota Turbine and Systems Inc.” for their assistance with the 

operation of the micro gas turbine system.

16



Thank you for your attention !!

17


