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Goal: Versatile, Small Scale Solar NH; Synthesis

Solar Thermochemical NH§ Svynthesis

e Possible:

= Operation near atmospheric
Pressure

= Accommodates inherent
intermittent nature of renewable
energy

» Reduced capital investment
» Tunable/Modular
« To operate near the end user

Gas
Products

* Perhaps by a single farmer
Reactants

e Less Essential:

« Transportation infrastructure

. Politically stable region ()
» Technically advanced workforce



NH,; Synthesis via Solar Thermochemical Cycle
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Potential Benefits of the Proposed Solar Cycle

Produces Valuable Syngas Co-Products
LHV Upgrade in Products

Solar Energy Stored as NH; and Syngas
Operable at Pressures Near 1 atm.

Possible at Smaller Economies of Scale

-’ Solar Radiation ‘.
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Experimental Method: Nitrogen Fixation — Rxn #1
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* Goal: Max Nitrogen Fixed to Mn ®|

* Find Optimum Rxn Temperature
* Range: 600 °C<T <1000 °C
* Find Optimum Reaction Time
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Max Nitrogen Fixation Occurs at 800 °C and 120 min
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Experimental Method: Ammonia Synthesis — Rxn #2
1 5
EMnsNZ(S) + EHZO(V) < EMnO(S) + NHg(g) + HZ(g)

AHRC = —302.4 k] mol™!  AGR22C = —230.5 k] mol~?
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Alkali-Metal ‘Promotor’ Improves NH, Yield
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Expt. Method: Metal Oxide Reduction — Rxn #3

4% CH,
by Volume
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Partial Conversion of MnO by Dilute CH, Achieved

Xvino = 0.371 £ 0.072
Ymnen2.ss = 0.381 £ 0.083
* CO, NOT Detected!
* H, / CO =29.9 + 6.0 mol H, mol* CO NH, to Fertilizer/  H, to Fischer-Tropsch

Chemical Industry  / Methanol Synthesis
Corrosion and NH; Synthesis

T =1150°C
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Mn,C; formation an issue

1 5 5 5 1
\ EMn5N2+5H2 +ECOE EMn0+ECH4+EN2 J

Possible Solutions: SN P -

* Co-Feed CO
2 CO + H, to Fischer-

* Co-Feed H, Tropsch / Methanol

Synthesis

Concentrated
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What if We Could Use Renewable H,?

Nitridation
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Concentrated
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N,- H, Cycling Expt. Method

* Nitridation: .
= 700 °C
= 30 min
= N, Flowrate: 2.0 £ 0.1 L min‘t

D

Reduction:

= 700 °C
= 60 min

= H, Flow: 1.8 +0.1L min?
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Unreacted NH,
Drager Tube Confirmed

NS

ZoN
/
N

500 L Gas
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>
NH, Detection via
Dréiger NH,
Detection Tube
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NH; Yield Limited When Using Mn Alone

0.100 -
 Nitridation:
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XRD Shows Stable Reactant

 Nitridation:
0.9
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. 0.8
= 30 min 0.7
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Nitridation (N,) — Reduction (H,) Cycling Stage

14



Mechanistic understanding of metal nitride reduction
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2Nnitride-'_SHz(g) => ZNHS(Q) @ 700°C and 1 atm
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NH;*(v)
NH,*(v)
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" H, NH, Niog H, o NH,
ladsorption N, +3H* => NH,* release  diffusion adsorption N, t3H* => NH,3 release

Reaction coordinate

On Mn,N, H, dissociative adsorption is endothermic.

Reduction of lattice N (N,,,), forming NH,, is very endothermic.
Diffusion energy barrier of subsurface N is 1 eV.

Hydrogenation of the diffused subsurface N (N,) is also endothermic.

Slide provided by Dr.Bin Liu, Kansas State University, Manhattan, KS
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Modifying the properties of Mn,N by doping heteroatom (M)

To modify pure Mn,N to facilitate NH; formation, it is desirable to:
* |lower endothermicity (e.g., increasing H binding energy)
* |lower N diffusion energy barrier.

« Heteroatom is introduced to disturb local electronic structures.
« The heteroatom is deliberately placed in the sublayer (‘s’) and the top layer (‘t’) of
Mn,N.

Slide provided by Dr.Bin Liu, Kansas State University, Manhattan, KS



Manganese nitride reduction by doping with Fe

Free energy, eV

3H,(9) NH*
05 W, NH; N, H, NH,

N 3H* => NH_*

-1.0

Reaction coordinate

The N-Fe bond is expected to be weaker than N-Mn bond, and Fe dopant can:
» Lower diffusion energy barrier of subsurface N
» Lower reduction energy (when Fe is at top surface)

e _ _ f partlcles from coIIO|daI
« However, the overall process is still quite endothermic (by > 1.5 eV). synthesis (Chikan group)

Slide provided by Dr.Bin Liu, Kansas State University, Manhattan, KS
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