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Goal:  Versatile, Small Scale Solar NH3 Synthesis

Solar Thermochemical NH3 Synthesis

• Possible:  

 Operation near atmospheric 
Pressure

 Accommodates inherent 
intermittent nature of renewable 
energy

 Reduced capital investment

 Tunable/Modular

 To operate near the end user

• Perhaps by a single farmer

• Less Essential:

 Transportation infrastructure

 Politically stable region

 Technically advanced workforce

Gas
Reactants

Gas
Products



P = 1atm.
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NH3 Synthesis via Solar Thermochemical Cycle



Potential Benefits of the Proposed Solar Cycle
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P ≤ 5 atm

500°C ≤ T ≤ 1200°C
Promoted – Mn Reactant

H2O 

2.6 kg

N2 (from air) 

0.8 kg

Nat. Gas

2.4 kg

LHV = 117.6 MJ

Basis: NH3

1.0 kg

LHV = 18.6 MJ

CO

4.1 kg

LHV = 41.5 MJ

H2

0.7 kg

LHV = 85.2 MJ
LHV In:

117.6 MJ

LHV Out:

145.3 MJ

Solar Radiation

58.8 MJ kg-1 NH3

Proposed Solar Cycle SoA: Haber-Bosch NH3 Production

• Produces Valuable Syngas Co-Products • Food Production Coupled to CO2

• LHV Upgrade in Products • LHV Lower in Products

• Solar Energy Stored as NH3 and Syngas • Product Energy from Nat. Gas Combustion

• Operable at Pressures Near 1 atm. • Requires Severe Pressures

• Possible at Smaller Economies of Scale • Large Scale Required: ≥ 1500 ton/day NH3



Experimental Method:  Nitrogen Fixation – Rxn #1
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• Goal:  Max Nitrogen Fixed to Mn
• Find Optimum Rxn Temperature

• Range:  600 °C ≤ T ≤ 1000 °C

• Find Optimum Reaction Time
𝟓

𝟐
𝐌𝐧(𝐬) +

𝟏

𝟐
𝐍𝟐(𝐠) ↔

𝟏

𝟐
𝐌𝐧𝟓𝐍𝟐(𝐬) 1A

𝟒𝐌𝐧(𝐬) +
𝟏

𝟐
𝐍𝟐(𝐠) ↔ 𝟏𝐌𝐧𝟒𝐍(𝐬) 1B

Mn MnaNb

N2
1



Max Nitrogen Fixation Occurs at 800 °C and 120 min
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2
Mn(s) +

1

2
N2(g) ↔

1

2
Mn5N2(s) ∆HRxn

800°C = −91.0 kJ mol−1 ∆GRxn
800°C = −64.3 kJ mol−1 1A

4Mn(s) +
1

2
N2(g) ↔ 1Mn4N(s) ∆HRxn

800°C = −110.6 kJ mol−1 ∆GRxn
800°C = −61.0 kJ mol−1 1B

Mn MnaNb

N2
1

Mn-Nitride Mixture at Optimal:
• Mn6N2.58-rich
• w/ Mn4N also



Experimental Method:  Ammonia Synthesis – Rxn #2
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H2O NH3!!

MnaNb MnO

2

Time MnOMnaNb

P = 1 atm

H2O(v)

Steam Generator

NH3

Electrode

NH3 Collector

Ice
Bath

NH3

Dräger
Tube

H2O(v)

NH3(v)T = 500°C

𝟏

𝟐
𝐌𝐧𝟓𝐍𝟐(𝐬) +

𝟓

𝟐
𝑯𝟐𝑶(𝒗) ↔

𝟓

𝟐
𝑴𝒏𝑶(𝒔) + 𝑵𝑯𝟑(𝒈) + 𝑯𝟐(𝒈)

∆HRxn
500°C = −302.4 kJ mol−1 ∆GRxn

500°C = −230.5 kJ mol−1



Alkali-Metal ‘Promotor’ Improves NH3 Yield
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Expt. Method:  Metal Oxide Reduction – Rxn #3
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𝟓

𝟐
𝐌𝐧𝑶(𝒔) +

𝟓

𝟐
𝑪𝑯𝟒(𝒈) ↔

𝟓

𝟐
𝑴𝒏(𝒔) +

𝟓

𝟐
𝑪𝑶(𝒈) + 𝟓𝑯𝟐(𝒈)

∆HRxn
1150°C = 916 kJ mol−1 ∆GRxn

1150°C = −57.1 kJ mol−1

T = 1150°C



Partial Conversion of MnO by Dilute CH4 Achieved
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• XMnO = 0.371 ± 0.072
• YMn6N2.58 = 0.381 ± 0.083
• CO2 NOT Detected!
• H2 / CO = 29.9 ± 6.0 mol H2 mol-1 CO

Reduction and Nitridation

Corrosion and NH3 Synthesis

𝟏

𝟐
𝑴𝒏𝟓𝑵𝟐  +  

𝟓

𝟐
𝑯𝟐𝑶                             

𝟓

𝟐
𝑴𝒏𝑶 +  𝟏𝑵𝑯𝟑  +  𝟏𝑯𝟐

All Pressures = 1 atm.

𝟏

𝟐
𝑴𝒏𝟓𝑵𝟐 + 𝟓𝑯𝟐 +

𝟓

𝟐
𝑪𝑶                       

𝟓

𝟐
𝑴𝒏𝑶 +

𝟓

𝟐
𝑪𝑯𝟒 +

𝟏

𝟐
𝑵𝟐

NH3 to Fertilizer / 

Chemical Industry

H2 to Fischer-Tropsch 

/ Methanol Synthesis

CO + H2 to Fischer-

Tropsch / Methanol 

Synthesis
Concentrated 

Solar Radiation

T = 1150°C
t = 30 min

Mn7C3 formation an issue
Possible Solutions:
• Co-Feed CO2

• Co-Feed H2
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What if We Could Use Renewable H2?

𝟓

𝟐
𝑴𝒏(𝒔)  +  

𝟏

𝟐
𝑵𝟐(𝒈)                         

𝟏

𝟐
𝑴𝒏𝟓𝑵𝟐(𝒔)

All Pressures = 1 atm.

𝟓

𝟐
𝑴𝒏(𝒔) + 𝟏𝑵𝑯𝟑(𝒈)                           

𝟑

𝟐
𝑯𝟐(𝒈) +

𝟏

𝟐
𝑴𝒏𝟓𝑵𝟐(𝒔)

Nitridation

Reduction and NH3 Synthesis

Concentrated 

Solar Radiation



12

N2- H2 Cycling Expt. Method

500 L Gas 
Collection 

Bag

NH3, 
H2

Time
H2

NH3 Detection via 
Dräger NH3

Detection Tube

MnaNb
Mn

• Nitridation:

 700 °C

 30 min

 N2 Flowrate: 2.0 ± 0.1 L min-1

• Reduction:

 700 °C

 60 min

 H2 Flow:  1.8 ± 0.1 L min-1

Unreacted
Dräger Tube 

NH3

Confirmed
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NH3 Yield Limited When Using Mn Alone

• Nitridation:

 700 °C

 30 min

• Reduction:

 700 °C

 60 min
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XRD Shows Stable Reactant

• Nitridation:

 700 °C

 30 min

• Reduction:

 700 °C

 60 min



Mechanistic understanding of metal nitride reduction
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2Nnitride+3H2(g) => 2NH3(g) @ 700 C and 1 atm 

• On Mn4N, H2 dissociative adsorption is endothermic. 

• Reduction of lattice N (Nlat), forming NH3, is very endothermic.

• Diffusion energy barrier of subsurface N is 1 eV.

• Hydrogenation of the diffused subsurface N (Nss) is also endothermic.

* + 
3H2(g)

H* NH*

H*

NH2*
H*

NH3*

NH3(g) 
+*(v)

*(v)

H*

NH*(v)

H*

NH2*(v)
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NH3(g)
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Slide provided by Dr.Bin Liu, Kansas State University, Manhattan, KS



Modifying the properties of Mn4N by doping heteroatom (M)

• Heteroatom is introduced to disturb local electronic structures.

• The heteroatom is deliberately placed in the sublayer (‘s’) and the top layer (‘t’) of 

Mn4N.

To modify pure Mn4N to facilitate NH3 formation, it is desirable to:

• lower endothermicity (e.g., increasing H binding energy) 

• lower N diffusion energy barrier.  

Ms@Mn4N 

M

Mn

N

Mt@Mn4N 

Mn

M

N

Slide provided by Dr.Bin Liu, Kansas State University, Manhattan, KS
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Mn

Manganese nitride reduction by doping with Fe

The N-Fe bond is expected to be weaker than N-Mn bond, and Fe dopant can:

• Lower diffusion energy barrier of subsurface N

• Lower reduction energy (when Fe is at top surface)

• However, the overall process is still quite endothermic (by > 1.5 eV).

TEM image of MnFe 

particles from colloidal 

synthesis  (Chikan group)

N

Slide provided by Dr.Bin Liu, Kansas State University, Manhattan, KS
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