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Motivation

Economic renewable H, is
getting closer

H, is incompatible with large
scale fuel transport infrastructure

Chemical fuels are attractive H,
carriers since they are safer and
easier to transport

Chemical fuels offer higher
volumetric energy densities than
pure H,

But what fuels can we
choose from?

Nitrogen Based Fuels

Carbon Based Fuels

Ammenia
Econemy




Motivation

« Synthetic fuels from N, & H, NH,
can be gases, liquids or solids.
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nitrate in-situ ignition agent.



Feasibility of Nitrogen-based Fuels

Power to Fuel to Power Analysis — PFP index

For any synthetic fuel the ratio of the useful energy output and the synthesis energy from

stock materials can be calculated giving rise to the PFP index:
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Feasibility of Nitrogen-based Fuels

Power to Fuel to Power Analysis — PFP index

For any synthetic fuel the ratio of the useful energy output and the synthesis energy from

stock materials can be calculated giving rise to the PFP index:
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International Edition C emie



Feasibility of Nitrogen-based Fuels

Power to Fuel to Power Analysis — PFP index

For any synthetic fuel the ratio of the useful energy output and the synthesis energy from

stock materials can be calculated giving rise to the PFP index:

. ! . Energy
F Air Separation Wa}te.r synthesis Distribution Density Combustion PFP
uel (CQ/ Ny splitting energy 1 . )
(Gltont Glton?  (GJtont (GJtong (HHVE efficiency index
(GJtony
18.1 90.8 1.2 1.51 55.5 5%% 27%
9.1 34.1 4.8 0.13 23.7 5%% 27%
12.6 47 4 8.7 0.15 31.7 50 23%
NH; 0.18 32.1 1.6 0.19 22.5 53% 3
Aq.AHU 2.56 14.6 1.5 0.10 9.2 50
Aq.ANA 0.06 115 0.9 0.08 3.7 47%
Aq.UAN 0.79 10.9 1.3 0.07 3.3 485

Angewandte A Grinberg Dana et al., Angew. Chem. Int. Ed., 55, 8798-8805, 2016.
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Effect of d on AAN ignition

« Ammonium nitrate is a net oxidizer, decomposing into ammonia (reducer) and nitric
acid (oxidizer)

BNHNO,  +2NH,OH, + XH,0, ~GHNO,  + SNH ¥ (X +2)H,0, = 4Ny +(X +1DH 0]

* The combustion of AAN does not require an external oxidizer (i.e. O,/Air)

« For AAN, the equivalence ratio (the fuel to oxidizer ratio) is as follows:

b=fuel to oxidizer ratio/(fuel to oxidizer ratio)dsto. = nlfuel [nloxi. /5/3

D

* Hence, fuel rich and lean mixtures correspond to ®>1 and ®<1




Experimental

TC-2| [TC-1

PT-2 [ 1

* Testing rig: a dual chamber reactor 1 IE

 Simultaneous differential thermal /

barometric analysis (DTA/DBA)

« Heating 30°C - 450°C @ 5°C min-’

e Parameter of interest: the AIT -
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Autoignition Data
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Effect of d on AAN ignition
AT (K) vs. time starting from 250°C
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Effect of ¢ on AAN ignition

610

SR

m The AIT increased with

® Autoignition is not detected above
=6 and ®=8 using DBA and DTA,
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Autoignition Temperature (K)
o
~J
=)

€ Temperature

B Pressure
530

Combustion .
ndFame B- MosevitzKy et al., Combust. Flame, 188, 142-149, 2018. Equivalence Ratio (®)



Effect of ¢ on AAN ignhition — Reaction Mechanism

m As ¢ Is Increased, more ammonia is present in the gas phase, thereby

increasing the rate of re-formation of AN, and delaying the thermal autoignition:
NHIA NOI3 U(ag) < NHI3 U(g) +HNOI3 U(g)

® Nitric acid mostly reacts to form dinitrogen tetraoxide, which in turn easily

decomposes to nitrogen dioxide, generating small amounts of nitrogen trioxide:
HNOI3 I(g) +HONOI(g) - N2 04 I(g) +Hi2 0I(g)

N2 014 I(g) =2/N0I2 I(9) 2NV0I2 U(g) »NOUg) +NOI3 U(g)

®m Since amidogen generation is the ignition rate limiting step, higher ¢ values
delay the thermal autoignition of AAN:

NHI3 I(g) +N0I2 I(J) YHONOWG) — NHI3 i(g) +NOI3 I(J) ) +HNOI3 I(J)

Combustion B. Mosevitzky et al., Combust. Flame, 188, 142-149, 2018.
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Effect of ¢ on AAN ignition

The decreasing DTA peaks with increasing
® suggests a smaller exothermic ignition

To confirm this, the heat produced from
250°C to the ignition peak was calculated

Generated heat drops with increasing @

This suggests the ignition is limited by AN
content

Combustion

ndFame B- MosevitzKy et al., Combust. Flame, 188, 142-149, 2018.
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Effect of ¢ on AAN ignition

30%
* Increasing large ¢ can lead to higher
PFP

oxidized with air.
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if the remaining NH3 is
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« Ammonium nitrate can be a catalyst

for ammonia ignition at large ¢.
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Combustion Pollutant Abatement (UAN)
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Combustion Pollutant Abatement (UAN)
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 Platinum can eliminate NO, at temperatures as low as 250°C

« But ammonia is generated

J A K. Deepa et al., ACS Omega, accepted, 2017
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Combustion Pollutant Abatement (UAN)
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* Ruthenium shows good pollutant abatement activity only above 350°C

* However, it produces N,O rather than NOy and ammonia
A.K. Deepa et al., ACS Omega, Minor Revisions.
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Combustion Pollutant Abatement (UAN)
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« Combining Pt and Ru produces an effect similar to pure Ru

* However, it requires lower temperature (T>300°C) and increases N, yield
A.K. Deepa et al., ACS Omega, Minor Revisions.
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Combustion Pollutant Abatement (UAN)

With proper catalysts even lower pollutant levels can be reached
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Combustion Pollutant Abatement (UAN)

With proper catalysts even lower pollutant levels can be reached
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Conclusions

* PFP index:
* NH; ranks higher than CH,, CH;OH or DME on an energy basis
 UAH (Urea Ammonium Hydroxide) is comparable with HC fuels

* AN can be used as an initiator for NH, combustion
* The ignition point of AAN increases with Equivalence ratio,
* AN limits the extent of reaction

- Mixed metal catalyst of Pt,Ru,; reduces the pollutant

emission to a minimum even at 5 MPa
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