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Solar thermochemical NH; synthesis (STAS) @]‘
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AIN/AL,O4 not the ideal
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I dentifying viable pairs (MN/MO) @]J
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What makes a good pair (based on thermo)?
« Rxns are spontaneous and high yield
« MN and MO are thermodynamically stable

Michalsky and Pfromm, AIChE Journal, 2011



I dentifying viable pairs (MN/MO) @]J
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Acquiring Gibbs formation energies

Experimental data is Calculation data is
incomplete (and difficult) incomplete (and difficult)

NST
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Acquiring Gibbs formation energies @]‘

Experimental data is Calculation data is
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Some evidence that ML model works

ML model performs similarly

on training and test sets
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Some evidence that ML model works @]‘

Mo,N + 4H,0 & 2MoO, + NH; + 2.5H,
+ 0.5N, — Mo,N NH; < 0.5N, + 1.5H,
MoO, + 2H, «~ Mo + 2H,0
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equilibrium well predicted
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I dentifying viable pairs (MN/MO) @]J
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What makes a good pair?
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Viability of pairs for NH; generation @]‘
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Viability of pairs for NH; generation
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Viability of pairs for NH; generation
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Viability of pairs for NH; generation @]‘
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Viability of pairs for MO reduction by H,
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Viability of pairs for N fixation
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But what about the full cycle? @j
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But what about the full cycle?
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But what about the full cycle?
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But what about the full cycle?
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What about going beyond reaction energetics? @]‘
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Benchmarking equilibrium analysis @]‘

Cr

« Cr+ N, — Cr,N shown at 1000°C

* Cr,N + H,0 — Cr,0; shown at 1000°C
* Cr,04 + H, — Crfailed at 1600°C

22
Michalsky et al., Solar Energy 2011



Benchmarking equilibrium analysis

Cr

* Cr+ N, — Cr,N shown at 1000°C
* Cr,N + H,0 — Cr,0; shown at 1000°C
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Benchmarking equilibrium analysis @]‘

Cr

« Cr+ N, — Cr,N shown at 1000°C

* Cr,N + H,0 — Cr,0, shown at 1000°C
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3.0 1 o T @ P .
"""" o * 1004 ®CrN uCrN ® Cr 0Cr,0, o CrO
2.5 z pe
wn D ‘oo
@ S 75- +
g 201 /7~ CroN N, 2
- L — H,0 - Cr0; | E 0 4
ols>y NH3 - H> o
2 . Cro - Cr & 251
>1.01 & LA . o!| &
U. \\ E 0 ARLE + e
W 0.5 et S 3 0 500 1000 1500
J—— :::_—_:::======. T (OC)
0.01 ®-------mmms L ELTPPTIYILIE Soietee ‘ ---------- ®}
400 800 1200 1600 2000 Nitride corrosion
Temperature (K) predicted and observed

24
Michalsky et al., Solar Energy 2011



Benchmarking equilibrium analysis @]‘

Cr

« Cr+ N, — Cr,N shown at 1000°C

* Cr,N + H,0 — Cr,0; shown at 1000°C
* Cr,0; + H, — Crfailed at 1600°C
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Systematic thermodynamic screening of MN/MO

v' STAS limited by correlated MO/MN stability
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Systematic thermodynamic screening of MN/M

v Nature of the redox cycle leads to

o 1

4 . R R —
- ’
0 o oo I BE gt
< -~ % * : s 3
8¢€ it ¥t A
& st L ke . WO [
Ta A oy -
3 ke o
o 22 7 vk AV m 8
3 AR  { W
- . sotiead g .
S R | " "l' = ]
-3 Y

25 -20 -15 -1.0 05 00 05 10

AGy (1200 K)
L] (eV/atom)
volcano-like dependence upon AG

500 oy 5 = g
: i e i
] i
400 - 2 $.£.° . |
< e . SN I X
S = 300+ P a5t K . 0
. - N % 1 ° 0® 5 e

g% c"(i ,.'i“ ‘.'i ' -06‘ T ¢

€S 200 o o s ,,,.,.? W “del0.0 o [ ¥ TR
gg o sHUE 9% 340 %2 ’Q":
) . [ ] 1 @] * . bl
e | T e o 5
0 _.__________________________________________'_'.‘E.:_': ______________ L A
-100 T - ' . ; : . ' :
-25 -20 -15 -1.0 -05 00 05 1.0 -3 -2 -1 0 1
AG; (1200 K) AG; 10(1200 K)
(eV/atom) (eV/atom)

27



Systematic thermodynamic screening of MN/MO @]‘

v Machine-learned eq analysis
compares well with experiment
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Systematic thermodynamic screening of MN/MO

v STAS limited by correlated MO/MN stability ;' . i~ 3

v Nature of the redox cycle leads to LS N
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