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Developing Electrocatalyst for NH; Production from H,0 and
N, at ambient conditions
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Outline of Development of NRR catalysts

Necessity Of Determining Optimum Potential And Best Electrolyte

Activity at different potential
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Electrolyte: Alkali vs. Acid
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U Controls-Tested electrolyte before testing in N, and Ar to consider ammonia that might be present in atmosphere

U Separate electrochemical cell for testing in N, and Ar
0 Method of detection-Indophenol test (Also retested with salicylate method)

QrpPQ-e

CHANGING WHAT'S POSSIBLE

 Best electrolyte for our catalyst-0.1 M KOH

O  Optimum Potential = (-) 0.3 V vs. RHE
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FeN, supported on stable N
Metal nitrides based on DFT doped carbon derived from Derived carbon from Fe
ZIF8 free ZIF8 by thermal

Main Challenge: Hydrogen activation
Evolution
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Zn(NO,),*6H,0 1 ' ;
e Order of Metal |Organic Framewq

S Particle size . .|
controlled synthesis e

2nm

F-8 before pyrolysis

Highly disordered carbon
derived from
ZIF-8 via pyrolysis under inert
atmosphere

Disordered N doped Carbon:

ZIF-8 after pyrolysis
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Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media:
Particle Size Control and Thermal Activation

Carbon derived
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had highest activity
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Absorbance (a.u)

N,, 0.1M NaOH
1] Potassium ions in

electrolyte played a
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Mukherjee et al. Nano Energy 48 (2018) 217-226
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Activity increased as Fe doping was

‘ilblj‘i°ie3 reduced
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Regeneration of
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Removal of 2" NH,

Associative Distal Pathway: Mechanism Of NRR On Carbon
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Reaction Coordinates
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(1) Pyrolic nitrogen vacancy and carbon
defects originated due to pyrolysis

(2) Adsorption of N, on vacant site

(3) Protonation

(4) Further protonation

(5) Detachment of 1st ammonia molecule

(6) Protonation for release of second
ammonia molecule is favored with

applied potential

(7) Release of Ammonia regenerates the N
vacancy
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U Zn boils at 907 °C leaving more defects
mol cm=2h-1

- in the carbon above 900 °C
F.E.~10 % U Reduction of nitrogen doping with
| N-1.6 % increase in pyrolysis temperature

: L Removal of pyrolic nitrogen may create
M adsorption site for nitrogen
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