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Cooling

Deceptively Simple, yet Complex

Small, Distributed, Modular Processes on Demand
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Catalytic ammonia synthesis: fundamentals and
practice. Springer Science & Business Media, 2013.
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RXN-CON VS. RXN-ABS
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MgCl, + NH, ——=Mg(NH,)ClI,
Mg (NH,)CI, + NH, ——=Mg(NH,),Cl,
Mg(NH,),Cl, + 4NH, ——=Mg(NH,),Cl,
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In Reaction-Absorption, Reaction Temperature has Big Little
Effect on the Production Rate
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Preliminary thoughts on:

* How to produce 20,000 metric tons of ammonia annually, with
reaction-absorption ?

* What is the energy requirement?
* What is the footprint for such facility?

* What is the lowest pressure for a viable process?
And more ...

We should first learn from the conventional RXN-COND process!



RXN-COND as Base Case:
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Low Pressure RXN-ABS Process Simulation
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Heat Integration is KEY!



Conclusion:
Strategies to Improve Haber-Bosch Process

1- Lower Pressure (depends)

2- Better Separation/Better Sorbents

- Support-free, stable absorbent, and more complete separation

3- Better Catalysis (Netkey-Here} should be

considered

- More active catalyst at lower temperature benefits low pressure processing
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