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population over the past century
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Disadvantages: 1. High energy consumption; 2. Carbon intensive process; 3.
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Electrochemical Nitrogen Reduction (ENRR)
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ENRR

1. Renewable energy
2. Low temperature and pressure

3. On-site production

Batch Cell Membrane Electrode Assembly

N, WE RE

Yl ce

Current Collector

Bipolar Plate
Catalyst + Gas Diffusion
Layers

o o

T MembraneT
Silicone Gasket

Not suitable for large scale synthesis Easy to scale up 1
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Setup for ENRR

Current Collector Cathode: 0.5 mg cm2 catalysts (N,)

—— Bipolar Plate—— Anode: 0.4 mg cm™2 Pt (H,)
Catalyst + Gas Diffusion Electrolyte: Nafion-211 membrane
Layers

Oooo>
o 0|0
o 00

MembraneT

Silicone Gasket

Membrane electrode assembly (MEA) configurations provide reliable
activity measurements

15
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Transition Metal Nitrides for ENRR
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Transition Metal Nitrides for ENRR
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Transition Metal Nitrides for ENRR
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Transition Metal Nitrides for ENRR
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Quantification of Ammonia
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Quantification of Ammonia

|. Nitrogen Reduction and Sample Collection

.—

—.—E—% +

Spent MEA Membrane soaking
solution

Fresh MEA

Cathode exhaust  Anode exhaust

Il. Sample Analysis
N mass balance enables the reliable
O dibabotie LN quantification of produced ammonia

~ Elementar Analysis

7

N(VN,post)

Nessler Quantification
+ + — N(NH3,Efﬂuent) + N(NH3,MEA)

[1l. Ammonia Quantification

N(NH5,ENRR) = N(NH4 Effluent) ¥ NnHs MEA) + NvN,post) = N(vN,pre)

Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 23
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VN is an Active, Selective and Stable ENRR Catalyst
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Particle size: 6 — 15 nm Cubic VN phase

Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 24
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VN is an Active, Selective and Stable ENRR Catalyst
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Two orders of magnitude more active and selective than noble metal catalysts

Nash et al. J. Electrochem. Soc. 2017, 164, F1712-F1716
Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 26
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VN is an Active, Selective and Stable ENRR Catalyst

T_ 60 6
2 “ ~250 ymol/l~4 mg
§ 50" .
g 3 T
o 40;": » g)_
: O 45
LI I e ©
9 30_5'{'& -3 %n
9 — - g'
S 20—;-{— -2 3
S 1 h 3
T 104 : T
3 :
O ’ :
o O-"""""'""""|""""'I""I""l"''I""|""|""|—_0
0 20 40 60 80 100 120

Time / h

The N content in produced ammonia is about 9.4 times that in the catalysts

Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 27



Key questions:
 What is the active phase in ENRR?
« How does VN deactivate?
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XPS of VN Catalysts before ENRR
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XPS of VN Catalysts before ENRR
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XPS of VN Catalysts before ENRR

10000 6000
V 2p N 1s

8000 1 5000 VN
% © 4000 FNOy
O 6000- O |
> > 3000- Satellite
% =
S 4000+ S
= £ 2000 |
- — Ammonia

2000

, 1000 -
0 0

I I I
408 404 400 396

Binding Energy / eV Binding Energy / eV

33



[UNIVERSITY or [ JELAWARE

XPS of VN Catalysts before ENRR
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Based on the ratio of V 2p and N 1s bands assigned to VN,O,, and assuming a +3
oxidation state of V, the composition of the oxynitride is VN 70¢.45

Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 34
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XPS of VN Catalysts before ENRR
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VN 70045 : VN ratio on the fresh VN is ~0.91

Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391
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XPS of VN Catalysts before ENRR
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VN 70045 : VN ratio on the fresh VN is ~0.91

How does the surface composition change during ENRR?
Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 36
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XPS of VN Catalysts after ENRR
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VN, 70045 : VN ratio decreases to 0.77 after ENRR at -0.1 Vfor1 h

Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 37
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XPS of VN Catalysts after ENRR
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VN;.700.45 : VN ratio stabilizes at 0.54 after ENRR for1 hat <-0.2V
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XPS of VN Catalysts after ENRR
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VN;.700.45 : VN ratio stabilizes at 0.54 after ENRR for1 hat <-0.2V

Almost no ammonia is produced after ENRR for1 hat<-0.2V

Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 39
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XPS of VN Catalysts after ENRR
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VN, ;0,45 is likely the active phase for ENRR

Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 40
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Operando XAS of VN during ENRR
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The Pre-edge peak confirms the existence of VN; ;0,45 on the surface of VN

Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 41
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Operando XAS of VN during ENRR

1.2 0.6+
o 1.0 ° 05-
&) (]
: ;
£ 0.8 L 10.4+
; 2
0 —— O min ]
< 06+ 15 min j’; 0.3-
[0) —— 30 min o
g —— 45 min g
® - —— 60 min ® _
g 0.4 —— 75 min g 0.2
§ —— 90 min §

—— 105 min
0.2 —— 120 min 0.1-
0.0 ™ T T T T T T T 0.0_| T Buapkugr|ou|ndu
5480 5520 5560 56( 5460 5470
Energy / eV Energy / eV

The Pre-edge peak confirms the existence of VN; ;0,45 on the surface of VN

VN( 70045 is consumed during ENRR at -0.1V
Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 42
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Operando XAS of VN during ENRR
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The K-edge peak randomly changes with time and is relatively stable

Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 43
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Operando XAS of VN during ENRR
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* VN(.7O0p45 is consumed during ENRR

Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 44
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Operando XAS of VN during ENRR
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* VN(.7O0p45 is consumed during ENRR

« The catalysts deactivate during the first 4 h
Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 45
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Operando XAS of VN during ENRR
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 The consumption rate of VN 70y 45 is slower at -0.1 V
« Similar and stable amount of VN, ;0,45 is reached within 1h at potentials <

-0.2V
Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 46
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Operando XAS of VN during ENRR
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 The consumption rate of VN 70y 45 is slower at -0.1 V
« Similar and stable amount of VN, ;0,45 is reached within 1h at potentials <
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Operando XAS of VN during ENRR
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VN, ;0,45 is the active phase for ENRR

Yang et al. J. Am. Chem. Soc. 2018, 140, 13387-13391 48
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ENRR Occurs via the Mars-van Krevelen Mechanism
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ENRR Occurs via the Mars-van Krevelen Mechanism
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ENRR Occurs via the Mars-van Krevelen Mechanism
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ENRR Occurs via the Mars-van Krevelen Mechanism
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ENRR Occurs via the Mars-van Krevelen Mechanism
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ENRR Occurs via the Mars-van Krevelen Mechanism
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Key questions:
 What’s the density of active sites?
 What’s the rate-limiting step?
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Density of Active Sites
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Density of Active Sites
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Density of Active Sites
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Density of Active Sites
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Density of Active Sites
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Density of Active Sites
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The density of initial active N atoms is about 4.2%, about 25% of the initially active

surface N are able to sustain catalytic turnovers at the steady state
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Density of Active Sites
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surface N are able to sustain catalytic turnovers at the steady state
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Activation Energy of ENRR
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Activation Energy of ENRR
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The activation energy is about 94.2 kJ mol-
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Activation Energy of ENRR
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Activation Energy of ENRR
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The activation energy at no overpotentials is:
96 kJ mol-' eV-1x 0.2 eV + 69.8 kJ mol-! = 89 kJ mol-
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Activation Energy of ENRR
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The activation energy is about 89 kJ mol-! at no overpotentials

The activation of the N=N bond on VNO is likely the shared rate limiting step in
both thermochemical and electrochemical N, activation.
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Conclusion

1. VN is an active, selective and stable ENRR Catalyst
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Conclusion
1. VN is an active, selective and stable ENRR Catalyst

2. The active phase is oxynitride (VN ;0¢.45), although the bulk phase is VN
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Conclusion

1. VN is an active, selective and stable ENRR Catalyst
2. The active phase is oxynitride (VN ;0¢.45), although the bulk phase is VN
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Conclusion

1. VN is an active, selective and stable ENRR Catalyst
2. The active phase is oxynitride (VN ;0¢.45), although the bulk phase is VN

3. ENRR occurs via the MvK mechanism and the consumption of oxynitride
causes the deactivation

4. The density of initial active N atoms is about 4.2%, about 25% of the initially
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Conclusion

1. VN is an active, selective and stable ENRR Catalyst
2. The active phase is oxynitride (VN ;0¢.45), although the bulk phase is VN

3. ENRR occurs via the MvK mechanism and the consumption of oxynitride
causes the deactivation

4. The density of initial active N atoms is about 4.2%, about 25% of the initially
active surface N are able to sustain catalytic turnovers at the steady state

5. The activation energy is about 89 kJ mol-! at no overpotentials
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TPD-MS Quantification Agrees with Nessler’s Method

Calibration
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ntar Analysis Enables Accurate Quantification of Produced Ami
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t OCP, the Elementar results were consistent to Nessler results
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Turnover Number (TON) in ENRR

ed on the Elementar analysis and TGA results, the total N and V contents in the catalysts was 1
nd 58.5 wt%, respectively.

e there was 2.5 mg of the catalysts on carbon paper, the amounts of VN, ;0 45 (d) and VN phas
letermined to be 3.5 pymol and 25.2 ymol, respectively.

_ 25x107%x15.51%

0.7 xXd+e =
14

2.5%1073x58.5%
d+e=—7——"
509

 results suggest that the accessible amount of VN, ;0 45 was 57.8%, therefore, the TON of the

sts within 120 h is:

253.1 pmol 179
3.5 % 0.7 pmol X 57.8% Overall TON

 results suggest that 35.7% of VN ;0,45 was converted to VN at -0.1 V for 2 h. Thus, the total
1t of active nitrogen atoms in the catalysts after 4 h was:

3.5 % (57.8% — 35.7%) X 0.7 pmol = 0.54 pmol

e the total amount of ammonia produced at —0.1 V from 5 to 120 h was determined to be 232.5
the turnover number (TON) of the catalysts at steady state (5-120 h) was determined to be:

232.5 pmol

0.54 pmol Steady State TON



