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Absorbent-Enhanced Ammonia Production
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§ Alternative to traditional condenser-based process

§ Lower pressure
§ Smaller temperature difference for separation 
§ More complete separation

Condenser-Based Process Absorbent-Enhanced Process



Absorbent-Enhanced Ammonia Production
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Research at UMN:
§ Absorbent and lab-scale performance experiments1-3

§ Performance and energy consumption modeling4,5

§ Optimal design for small-scale, wind-powered operation6

Condenser-Based Process Absorbent-Enhanced Process
§ Lower pressure

§ Smaller temperature 
difference for separation

§ More complete separation

[1] Himstedt et al. (2015). AIChE J., 61(4), 1364-1371.
[2] Malmali et al. (2016). Ind. Eng. Chem. Res., 55(33), 8922-8932.
[3] Malmali et al. (2017). ACS Sustainable Chem. Eng., 6(1), 827-834.

[4] Smith et al. (2019), ACS Sustainable Chem. Eng., 7(4), 4019-4029.
[5] Palys et al. (2017). AIChE Annual Meeting
[6] Palys et al. (2018). Processes, 6(7), 91.



This Work: Comparative Technoeconomic Analysis
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§ What is the quantitative benefit of these design changes? 

§ Feedstock and utility sources: Natural gas vs. renewable?

§ Production scale?

Technoeconomic analysis of both processes

Absorbent-Enhanced Process
§ Lower pressure

§ Smaller temperature 
difference for separation

§ More complete separation

Condenser-Based Process



Comparative Technoeconomic Analysis Methodology
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§ Flowsheets modeled in gPROMS ProcessBuilder
• Detailed modeling of ammonia production loops only
• Ammonia synthesis gas available at 30 bar 

§ Natural gas and renewable feedstock/utility sources
• Natural gas: Purchased synthesis gas, natural gas heating
• Renewable: Electrolysis-derived hydrogen, electric utilities

§ Production scale range: 10,000 (distributed) to 1,500,000 ton/year (industrial)

§ Optimal design of synthesis loops to minimize levelized cost



Condenser-Based Process Flowsheet
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Absorbent-Enhanced Process Flowsheet
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Unit Modeling
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§ Compressors, heat exchangers, flash separation standard models 
• Mass and energy balances
• Thermodynamics and performance equations

§ Ammonia synthesis reactor modeling:
• Radial flow reactor
• Adiabatic
• Synthesis rate expression1: Non-infinite at zero ammonia partial pressures
• Empirical catalyst effectiveness factor derived for low pressure2

[1] Sehested et al. (1999). J. Cat., 188(1), 83-89.
[2] Dyson & Simon (1968). Ind. Eng. Chem. Fundam., 7(4), 605-610.



Absorption-Regeneration Modeling
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§ Multi-tubular fixed bed
§ Isothermal operation: Cooling for absorption, heating for regeneration
§ MgCl2-Si absorbent capacity1: 0.1	kgNH3/kgabs

§ Rates of absorption and regeneration1: 𝑓(𝑝123 − 𝑝123,67)
§ Equilibrium pressure: Decreases with increasing temperature2

§ Cycle time: 30 minutes
• Regeneration

• 5 minutes for heating/de-pressurization 
• 20 minutes for regeneration
• 5 minutes for cooling/re-pressurization

[1] Smith et al. (2019), ACS Sustainable Chem. Eng., 7(4), 4019-4029.
[2] Sørensen et al. (2008). J. Am. Chem. Soc., 130(27), 8660-8668.



Key Economic Assumptions: Capital Costs

9

§ Synthesis loop unit capital costs1

𝐶: = 𝐶:,<6=
𝑆:

𝑆:,<6=

?@
𝑓 𝑃:

§ Electrolysis capital cost2: $300/kW

§ Outside battery limits (OSBL) costs3: 50% of inside battery limits (ISBL)
§ Contingency costs3: 40% of ISBL+OSBL
§ Maintenance costs3: 10% of ISBL/year

§ Scaled project lifetime: 9.51 years (20 years at 10% discount rate)

[1] Woods (2007). Rules of thumb in engineering practice. Wiley.
[2] U.S. Dept. of Energy (2015). Fuel cell technologies office multi-year research, development, and demonstration plan.
[3] Towler and Sinnott (2017). Chemical Engineering Design. Elsevier. 



Key Economic Assumptions: Operating Costs
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§ Electricity cost1: $0.037/kWh

For natural gas feedstock and utilities
§ Natural gas cost2: $4.25/1000 cu. ft (2013-2018 average)
§ Synthesis gas levelized cost3: $1.55/kg (based on NG cost)

For renewable feedstock
§ Electrolyzer energy use1: 44 kWh/kgH2

[1] U.S. Dept. of Energy (2015). Fuel cell technologies office multi-year 
research, development, and demonstration plan.

[2] U.S. IEA (2019). U.S. Natural Gas Industrial Price Data.
[3] USDRIVE (2017). Hydrogen Production Technical Team Roadmap.



Levelized Cost Optimization
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Objective: minimize Levelized Cost= Annualized Capital Cost+Operating Cost
Production Scale

Decisions:
§ Unit sizes
§ Flowrates
§ Temperatures
§ Pressures

Constraints:
§ Production requirement
§ Liquefied ammonia product
§ Decision bounds for safety, performance, model 

fidelity (i.e. kinetics) 
§ Process model



Condenser-Based Optimal Flowsheet
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Absorbent-Enhanced Optimal Flowsheet

13



Levelized Cost of Ammonia Production
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§ Feedstock costs significant
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Levelized Cost of Ammonia Production
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§ Feedstock costs significant
§ Absorbent-enhanced less expensive, especially scaled down: Synthesis capex
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Capital Cost at 500,000 ton/year
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§ Lower pressure for absorbent-enhanced: 30 bar vs. 85 bar
• No feed compressor
• Lower cost for same sized units

§ Absorbent-enhanced avoids costly refrigeration

Absorbent – NG Absorbent – Renew. Condenser

Compressors
Heat Exchanger
Reactor
Absorbers
Cooling
Refrigeration

70
MM$

135
MM$

67
MM$



Levelized Cost of Ammonia Production

17

§ Feedstock costs significant
§ Absorbent-enhanced less expensive, especially scaled down
§ Bigger cost difference for natural gas production: Synthesis opex
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Condenser

Electricity

Natural Gas

Cooling Water

Catalyst Replacement

Absorbent Replacement

Absorbent - NG Absorbent - Renew.

Variable Operating Cost at 500,000 ton/year
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26.4
MM$

8.6
MM$

16.1
MM$

§ Heating for regeneration drives absorbent-enhanced operating costs
• Electrical heating is expensive
• No absorption-regeneration heat integration



Condenser

Electricity

Natural Gas

Cooling Water

Catalyst Replacement

Absorbent Replacement

Absorbent - NG Absorbent - Renew.

Variable Operating Cost at 500,000 ton/year

18

26.4
MM$

8.6
MM$

16.1
MM$

§ Heating for regeneration drives absorbent-enhanced operating costs
• Electrical heating is expensive
• No absorption-regeneration heat integration

Utility costs more strongly affect feasibility of absorbent-enhanced process



Sensitivity to Natural Gas Price
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Sensitivity to Electricity Price in Renewable Production
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Sensitivity to Electricity Price in Renewable Production
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Conclusions
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§ Absorption-enhanced process is viable alternative to condenser-based
• Lower capital investment
• Ideal for small-scale production with low-cost electricity: Renewable

§ Next improvement: Reduce operating costs à Heat integration?

Condenser-Based Absorbent-Enhanced
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Capital Cost Scaling

S1

TCIABS = 3.02s0.632

TCICOND= 4.54s0.686
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Energy Use at 500,000 ton/year

S2

§ Absorbent-enhanced requires more cooling, significant heating needed for ammonia recovery

§ Not all forms of energy have same cost: Cooling water vs. refrigeration

§ Reaction, absorption are exothermic, regeneration is endothermic: Better heat integration?
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Cost Correlations: Compressor
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𝑊̇6D6E = 𝑊̇EFGH/0.75

𝐶EFGH = 7.1
𝑊̇6D6E

1,000 𝑘𝑊

L.MN

Assumptions:
• Polytropic efficiency: 80%
• Electrical efficiency: 75%



Cost Correlations: Process Stream Heat Exchanger
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𝐴2PQ =
𝑄̇2PQ
Δ𝑇ℓG𝑈

𝐶2PQ = 0.44
𝐴2PQ
100 𝑚Y

L.Z[
0.98 + 0.0026𝑃 + 3.5×10bN𝑃Y

Assumptions:
• Shell and tube heat exchanger
• Overall heat transfer coefficient:  U = 0.15 de

Gf g



Cost Correlations: Cooler with Water
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𝐴hiij =
𝑄̇hiij
Δ𝑇ℓG𝑈

𝑚̇2fi,hiij =
𝑄̇hiij

20℃ × 𝐶H,2fi
𝑊̇2fi,hiij = 1.9×𝑚̇2fi,hiij

𝐶hiij = 0.44
𝐴hiij
100 𝑚Y

L.Z[
0.98 + 0.0026𝑃 + 3.5×10bN𝑃Y + 0.265

𝑊̇2fi,hiij

23 𝑘𝑊

L.Zl

Assumptions:
• Shell and tube heat exchanger
• Cooling water as heat transfer fluid
• C.W. inlet temperature: 20°C
• C.W. outlet temperature: 40°C
• Overall heat transfer coefficient:  U = 0.3 de

Gf g
• C.W. pumping requirement: 1.9 kJ/kg



Cost Correlations: Cooler with Refrigeration
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𝐴hiij =
𝑄̇hiij
Δ𝑇ℓG𝑈

𝐶hiij = 0.44
𝐴hiij
100 𝑚Y

L.Z[
0.98 + 0.0026𝑃 + 3.5×10bN𝑃Y + 2.77

𝑄̇hiij
1000 𝑘𝑊

L.ZZ

Assumptions:
• Shell and tube heat exchanger
• Cooling water as heat transfer fluid
• Refrigerant temperature: -30°C
• Overall heat transfer coefficient:  U = 0.3 de

Gf g
• Refrigeration COP: 3.5



Cost Correlations: Ammonia Synthesis Reactor
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𝐶mhnm = 7.72
𝑉mhnm
100 𝑚p

L.q
0.72 + 0.018𝑃

𝑊hrn = 𝜌hrn(1 − 𝜀hrn)𝑉mhnm

Assumptions:
• Catalyst density: 3000 kg/m3

• Bed void fraction: 40%
• Catalyst lifetime: 5 years
• Catalyst cost: $15.50/kg



Cost Correlations: Ammonia Absorbers
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Assumptions:
• Heat of absorption: -55.7 kJ/mol
• Absorbent density: 1700 kg/m3

• Total void fraction: 70%

• C.W. inlet temperature: 20°C
• C.W. outlet temperature: 40°C
• Overall heat transfer coefficient:  U = 0.3 de

Gf g
• C.W. pumping requirement: 1.9 kJ/kg

𝐴uv =
𝑄̇uv
Δ𝑇ℓG𝑈

𝑚̇2fi,uv =
𝑄̇uv

20℃ × 𝐶H,2fi
𝑊̇2fi,uv = 1.9×𝑚̇2fi,uv

𝐶rwx = 2 0.24
𝑉rwx
20 𝑚p

L.NY
0.72 + 0.018𝑃 + 0.21

𝐴rwx
100 𝑚Y

L.Z[
0.98 + 0.0026𝑃 + 3.5×10bN𝑃Y + 0.265

𝑊̇2fi,hiij

23 𝑘𝑊

L.Zl



Cost Correlations: Flash Separation
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Assumptions:
• Length-to-Diameter Ratio = 3

𝑢z = 0.107
𝜌ℓ − 𝜌z
𝜌z

𝐷 =
4𝑚̇z
𝜋𝜌z𝑢z

𝑉}x =
3𝜋𝐷p

4

𝐶}x = 0.474
𝑉}x
20 𝑚p

L.NY
0.72 + 0.018𝑃


