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Absorbent-Enhanced Ammonia Production

= Alternative to traditional condenser-based process
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Absorbent-Enhanced Ammonia Production
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Research at UMN:

= Absorbent and lab-scale performance experiments!-3

= Performance and energy consumption modeling#»

= Optimal design for small-scale, wind-powered operation®
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This Work: Comparative Technoeconomic Analysis

Condenser-Based Process Absorbent-Enhanced Process
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= Smaller temperature
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— = More complete separation

= What is the quantitative benefit of these design changes?

= Feedstock and utility sources: Natural gas vs. renewable?

= Production scale?

Technoeconomic analysis of both processes




Comparative Technoeconomic Analysis Methodology

Flowsheets modeled in gPROMS ProcessBuilder
- Detailed modeling of ammonia production loops only
- Ammonia synthesis gas available at 30 bar

Natural gas and renewable feedstock/utility sources
- Natural gas: Purchased synthesis gas, natural gas heating
- Renewable: Electrolysis-derived hydrogen, electric utilities

= Production scale range: 10,000 (distributed) to 1,500,000 ton/year (industrial)

Optimal design of synthesis loops to minimize levelized cost




Condenser-Based Process Flowsheet
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Absorbent-Enhanced Process Flowsheet
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Unit Modeling

= Compressors, heat exchangers, flash separation standard models
- Mass and energy balances
- Thermodynamics and performance equations

= Ammonia synthesis reactor modeling:
- Radial flow reactor
- Adiabatic
- Synthesis rate expression': Non-infinite at zero ammonia partial pressures
- Empirical catalyst effectiveness factor derived for low pressure?

[1] Sehested et al. (1999). J. Cat., 188(1), 83-89.
[2] Dyson & Simon (1968). Ind. Eng. Chem. Fundam., 7(4), 605-610.




Absorption-Regeneration Modeling

= Multi-tubular fixed bed
* |sothermal operation: Cooling for absorption, heating for regeneration
= MgCI,-Si absorbent capacity': 0.1 kg, 3/ kg

= Rates of absorption and regeneration®: f (pyn, — Pu,eq)
= Equilibrium pressure: Decreases with increasing temperature?
= Cycle time: 30 minutes
- Regeneration
5 minutes for heating/de-pressurization
20 minutes for regeneration
5 minutes for cooling/re-pressurization

[1] Smith et al. (2019), ACS Sustainable Chem. Eng., 7(4), 4019-4029.
[2] Sarensen et al. (2008). J. Am. Chem. Soc., 130(27), 8660-8668.




Key Economic Assumptions: Capital Costs

= Synthesis loop unit capital costs’
Sl :Bi
C; = Ci,ref (S_> f(P;)
Lref
= Electrolysis capital cost?: $300/kW

= Qutside battery limits (OSBL) costs®: 50% of inside battery limits (ISBL)
= Contingency costs3: 40% of ISBL+OSBL
= Maintenance costs3: 10% of ISBL/year

= Scaled project lifetime: 9.51 years (20 years at 10% discount rate)

[1] Woods (2007). Rules of thumb in engineering practice. Wiley.
[2] U.S. Dept. of Energy (2015). Fuel cell technologies office multi-year research, development, and demonstration plan.
[3] Towler and Sinnott (2017). Chemical Engineering Design. Elsevier.




Key Economic Assumptions: Operating Costs

= Electricity cost’: $0.037/kWh

For natural gas feedstock and utilities

= Natural gas cost?: $4.25/1000 cu. ft (2013-2018 average)
= Synthesis gas levelized cost3: $1.55/kg (based on NG cost)

For renewable feedstock

= Electrolyzer energy use': 44 kWh/kgH

[1] U.S. Dept. of Energy (2015). Fuel cell technologies office multi-year
research, development, and demonstration plan.

[2] U.S. IEA (2019). U.S. Natural Gas Industrial Price Data.

[8] USDRIVE (2017). Hydrogen Production Technical Team Roadmap.
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Levelized Cost Optimization

Annualized Capital Cost+Operating Cost

Objective: minimize Levelized Cost= Production Scale

Decisions: Constraints:

= Unit sizes = Production requirement

= Flowrates * Liquefied ammonia product

= Temperatures = Decision bounds for safety, performance, model
= Pressures fidelity (i.e. kinetics)

= Process model




Condenser-Based Optimal Flowsheet
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Absorbent-Enhanced Optimal Flowsheet
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Levelized Cost of Ammonia Production
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Levelized Cost of Ammonia Production
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= Absorbent-enhanced less expensive, especially scaled down: Synthesis capex

15



Capital Cost at 500,000 ton/year

Compressors
= Heat Exchanger

Absorbent — NG Absorbent — Renew. Condenser
135 = Reactor
M M$ = Absorbers

‘ 67
MM$
= Cooling
/ ' = Refrigeration

= |Lower pressure for absorbent-enhanced: 30 bar vs. 85 bar
- No feed compressor
- Lower cost for same sized units

= Absorbent-enhanced avoids costly refrigeration
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Levelized Cost of Ammonia Production

Natural Gas Production
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= Absorbent-enhanced less expensive, especially scaled down
= Bigger cost difference for natural gas production: Synthesis opex
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Variable Operating Cost at 500,000 ton/year

Absorbent - NG Absorbent - Renew. Condenser
Electricity
= Natural Gas
26.4 8.6 = Cooling Water
MM$ MM$

= Catalyst Replacement

= Absorbent Replacement

= Heating for regeneration drives absorbent-enhanced operating costs
- Electrical heating is expensive
- No absorption-regeneration heat integration
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Variable Operating Cost at 500,000 ton/year

Absorbent - NG Absorbent - Renew. Condenser
Electricity
= Natural Gas
26.4 8.6 = Cooling Water
MM$ MM$

= Catalyst Replacement

= Absorbent Replacement

Heating for regeneration drives absorbent-enhanced operating costs
- Electrical heating is expensive
- No absorption-regeneration heat integration

Utility costs more strongly affect feasibility of absorbent-enhanced process
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Sensitivity to Natural Gas Price
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Still less expensive at $6.15/1000 cu. ft (2008-2013 avg.)




Sensitivity to Electricity Price in Renewable Production
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Even more favorable with low-cost electricity: Stranded?
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Sensitivity to Electricity Price in Renewable Production
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Not viable with standard electricity costs: Why renewable production?
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Conclusions

= Absorption-enhanced process is viable alternative to condenser-based

- Lower capital investment
- |deal for small-scale production with low-cost electricity: Renewable

= Next improvement: Reduce operating costs > Heat integration?
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Capital Cost Scaling

Total Installed Capital Cost (MM$)
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Energy Use at 500,000 ton/year
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Process Alternative
mHeating  mCooling Compression

= Absorbent-enhanced requires more cooling, significant heating needed for ammonia recovery

= Not all forms of energy have same cost: Cooling water vs. refrigeration

= Reaction, absorption are exothermic, regeneration is endothermic: Better heat integration?




Cost Correlations: Compressor

Assumptions:
 Polytropic efficiency: 80%
 Electrical efficiency: 75%

Welec - .comp/0-75

0.65
C — 71 Welec
comp " \1,000 kW
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Cost Correlations: Process Stream Heat Exchanger

Assumptions:
« Shell and tube heat exchanger

 Qverall heat transfer coefficient;: U = 0.15 W

m2 K

4 _ Qnex /
HEX = AT

0.71

A
HEX ) (0.98 + 0.0026P + 3.5x1075P2)

100 m?2

CHEX == 044(
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Cost Correlations: Cooler with Water

Assumptions:

Shell and tube heat exchanger
Cooling water as heat transfer fluid
C.W. inlet temperature: 20°C

C.W. outlet temperature: 40°C

- kw
* Overall heat transfer coefficient: U = 0.3 ——
« C.W. pumping requirement: 1.9 kd/kg
Q . Q : .
Acoor = |A7€T(::LU| My,o0,cooL = 20°|C iag:,leo WHZO.COOL = 1'9mezO.C00L

0.71 0.79

ACOOL WH 0,co0L
= 0.44 . . . -5 p?2 . 29,
Ceoor =0 (100m2) (0.98 + 0.0026P +3.5x1079P?) +0.265 | — 227
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Cost Correlations: Cooler with Refrigeration

Assumptions:

Shell and tube heat exchanger
Cooling water as heat transfer fluid
Refrigerant temperature: -30°C

Overall heat transfer coefficient;: U = 0.3
Refrigeration COP: 3.5

kW
m2 K

y _ |Q600L|
COOL = —AT{)mU

Acool 071 QCOOL w7
0.98 + 0.0026P + 3.5x107 > P2 2.77
100 m?2 ) (098 + " ) (1000 kW)

CcooL = 0-44<
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Cost Correlations: Ammonia Synthesis Reactor

Assumptions:

 Catalyst density: 3000 kg/m3
« Bed void fraction: 40%

« Catalyst lifetime: 5 years

« Catalyst cost: $15.50/kg

0.4

V .
RCTR ) (0.72 + 0.018P)

C =772 (
RCTR 100 m3
Wear = pcar(1 — €car)Vrerr

=
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Cost Correlations: Ammonia Absorbers

Assumptions:
« Heat of absorption: -55.7 kd/mol <I><D
Absorbent density: 1700 kg/m?3

Total void fraction: 70%

C.W. inlet temperature: 20°C <I><D

C.W. outlet temperature: 40°C

Overall heat transfer coefficient: U = 0.3
« C.W. pumping requirement: 1.9 kd/kg

kW
m?2 K

Ayp = m = 74 = 1.9xm
UP AT, U H,0,UP ZOOCXCszo H,0,UP H,0,UP

V 0.52 A 0.71 WH 0.COOL 0.79
Caps = 2 [0-24( — ) (0.72 + 0.018P) + 0-21( 22 ) (0.98 + 0.0026P + 3.5x1075P2) + 0.265< 20, ) ]

100 m? 23 kW
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Cost Correlations: Flash Separation

Assumptions:
* Length-to-Diameter Ratio =3

— 41 3nD3
u, =0107 |Z2—P»  p— LA A
Pv TTPyUy 4
VFS 0.52
Crs = 0.474 (2 . mg) (0.72 + 0.018P)
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