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Supported multicomponent catalysts 
Accurate control of interaction and synergistic effect

between metal-metal, -support, and -dopant enables each reactant to 
optimize reaction kinetics
・High activity
・Excellent selectivity
・Long lifetime
・Unique functions

etc.
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Key issues
Development of effective catalysts for 

synthesis/decomposition of NH3
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Contents of talk
Construction of a facile process 

for H2 production from NH3



NH3 decomposition

Cat.
NH3 N2, H2

Convention: Endothermic reaction and requires external heat

NH3 → 1.5H2 + 0.5N2 ΔH= +45.4 kJ
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Start-up procedure 
- NH3 decomposition -

0 20
RT

ΔH>0 and requires external heat

Catalyst should be heated to 400℃ by external energy and adequate time
is required.

Time lapse delays onset of H2 production and lowers energy efficiency.



NH3 oxidative decomposition (AOD)

NH3 + 0.25O2 → H2 + 0.5N2 + 0.5H2O  ΔH<0

Cat.NH3
O2

N2, H2 
H2O

This research: Exothermic reaction and needs no external heat
→ H2 formation rate is fast

Cat.
NH3 N2, H2

Convention: Endothermic reaction and requires external heat



Rapid cold-start process for 
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Ice bath
(0℃)

Spontaneous 
oxidation

Rh0

CeO2-x

Rh0

800℃

Rh0
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n-C4H10 O2

H2 CO

Rapid cold-start process 
for oxidative reforming of hydrocarbon

n-C4H10+2O2 → 4CO+5H2 ΔH = -316 kJ

Chem. Mater., 20 (2008) 4177. ChemSusChem, 2 (2009) 1032. Catal. Commun., 10(2009)1478.
J. Jpn. Petrol. Inst., 52 (2009) 295. ChemSusChem, 3 (2010) 1364. J. Catal., 287 (2012) 86.
ChemCatChem, 6 (2014) 784. J. Jpn. Petrol. Inst. 58 (2015) 274.



Rapid cold-start process for 
NH3 oxidative decomposition (AOD)

NH3 + 0.25O2 → H2 + 0.5N2 + 0.5H2O ΔH=ｰ75 kJ/mol

600

Time (min)

Te
m

pe
ra

tu
re

 (℃
)

200

Catalytic autoignition of AOD

Self-heating of the catalyst
Conventional NH3

decompositio
n

200
RT

No need for external heat

Heat for self-heating
1. Heat evolved by NH3 adsorption
2. Heat generated by oxidation of the reduced catalyst



γ-Al2O3
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OH
Heating

- H2O
O Al+ O Al

O-Lewis acid site

Mechanism for triggering AOD at RT 

NH3 + 0.25O2 → H2 + 0.5N2 + 0.5H2O

Heat evolved by NH3 adsorption increases the catalyst temperature to the 
catalytic auto-ignition temperature.

Sci. Adv. 3 (2017) e1602747.
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Experimental

Activity test
- Flow system
- Adiabatic condition
- Pretreatment: He, 300℃，1 h
- Initial temperature: RT (～25 ℃)
- NH3/O2/He = 4/1/0.6
- SV: 62.5 L/(h·g) 
- Catalyst weight: 0.2 g

Analysis
- GC-TCD, Q-MS

Quartz wool

Thermocouple
(Inlet)

α-Al2O3 balls

Catalyst

Feed
gasCeramic 

insulation  
materials

Quartz reactor

Catalyst: 5 wt% RuO2/γ-Al2O3, 
5 wt% RuO2/La2O3



He pretreatment: 300 ℃
Feed gas was supplied at RT.
Power of the furnace was switched off during the reaction.

Procedure of activity tests
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Activity test for RuO2/La2O3
He, 300℃ → NH3/O2/He, RT

H2 formation rate
N2 formation rate
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No products were observed. 



Within 30 s,  H2 production rate increased to 33 L h-1 g-1.
catalyst bed temperature rose to 522 ℃.

→ AOD is triggered in a very short time without any external heat input.
NOx were not observed during the test.

Activity test for RuO2/γ-Al2O3

Sci. Adv. 3 (2017) e1602747.
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Rising in catalyst bed temperature 
through NH3 adsorption

Sci. Adv. 3 (2017) e1602747.

He, 300℃ → NH3/He, RT
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RuO2/γ-Al2O3
- Heat produced through NH3 adsorption increases the catalyst-bed 

temperature to catalytic auto-ignition temperature (90℃). 

Rising in catalyst bed temperature 
through NH3 adsorption

Sci. Adv. 3 (2017) e1602747.
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Calvet-type heat-flux calorimeter Volumetric gas-adsorption analyzer

Differential calorimeter combined with a 
volumetric gas-adsorption analyzer



Role of RuO2 and γ-Al2O3
for NH3 adsorption and heat evolution (50 ℃)

γ-Al2O3
- Chemisorption on Lewis acid sites heats the catalyst.
- Physisorption of NH3 contributes to the heat evolution of the catalyst.

Sci. Adv. 3 (2017) e1602747.
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Role of RuO2 and γ-Al2O3
for NH3 adsorption and heat evolution (50 ℃)

RuO2/γ-Al2O3
- Surface of RuO2 particles serves as strong NH3-adsorption sites.

Sci. Adv. 3 (2017) e1602747.

0 20 40 60 80 100

−100

−60

−40

−20

0

Adsorption-equilibrium pressure of NH3 (kPa)

To
ta

lh
ea

t o
f N

H
3

ad
so

rp
tio

n 
(J

 g
ca

t−1
)

To
ta

l a
m

ou
nt

 o
f N

H
3

ad
so

rb
ed

 (m
m

ol
g c

at
−1

)

D
iff

er
en

tia
l h

ea
t o

f N
H

3
ad

so
rp

tio
n 

(k
J 

m
ol

N
H

3−1
)

Total amount of NH3 adsorbed (mmol gcat
−1)

RuO2/γ-Al2O3

γ-Al2O3

RuO2/γ-Al2O3

γ-Al2O3

0

−50

−100

−150

−200

0 0.2 0.4 0.6 0.8 1.0 1.2 1.61.4

−80

0.0

0.5

1.0

1.5

2.0

2.5

NH3 partial pressure for triggering tests

γ-Al2O3 Physisorption

RuO2

γ-Al2O3
- Chemisorption on Lewis acid sites heats the catalyst.
- Physisorption of NH3 contributes to the heat evolution of the catalyst.



Multilayer physisorption
of NH3 molecules

NH3 is chemisorbed on RuO2 particles and Lewis acid sites on γ-Al2O3 and
subsequently physisorbed as multilayer.

Sci. Adv. 3 (2017) e1602747.
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Cyclic process of AOD

Sci. Adv. 3 (2017) e1602747.

NH3 + 0.25O2 → H2 + 0.5N2 + 0.5H2O
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Cycle tests of AOD (RuO2/γ-Al2O3)

Sci. Adv. 3 (2017) e1602747.

NH3 + 0.25O2 → H2 + 0.5N2 + 0.5H2O

He, 300℃ → NH3/O2/He, RT
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NH3 oxidative decomposition was triggered from RT at all cycles.
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Cyclic process of AOD
NH3 + 0.25O2 → H2 + 0.5N2 + 0.5H2O

Catalytic Cycle Requiring No External Energy
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O2/N2 was used instead of He.
→A practical system using NH3 and air would be developed.
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Rapid cold-start process for 
NH3 oxidative decomposition (AOD)

NH3 + 0.25O2 → H2 + 0.5N2 + 0.5H2O ΔH=ｰ75 kJ/mol
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2. Heat generated by oxidation of the reduced catalyst



NH3 + 0.25O2 → H2 + 0.5N2 + 0.5H2O

RuO2
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H2 treatment
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Mechanism for triggering AOD at RT 
(1wt%Ru/Ce0.5Zr0.5O2) 

Heat evolved by catalyst oxidation increases the catalyst temperature to the 
catalytic auto-ignition temperature.



H2 reduction, RT → He, 300 ℃ → NH3/O2/He=4/1/0.5, SV= 62.5 L/(hg), RT

30 s

Triggering AOD at RT (Ru/Ce2Zr0.5O2)
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Within 30 s,   H2 production rate increased drastically to 34 L/(hg).
catalyst bed temperature rose to 600 ℃.

→ AOD is triggered in a very short time without any external heat input.



Cyclic process of AOD
NH3 + 0.25O2 → H2 + 0.5N2 + 0.5H2O

Catalytic Cycle Requiring No External Energy
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H2 reduction, RT → He, 300 ℃ → NH3/O2/N2=4/1/4, RT

NH3 oxidative decomposition was triggered from RT at all cycles 
by the heat produced by oxidation of Ru/Ce0.5Zr0.5O2-x at RT.



Summary 
We present innovative process for H2 production without need
for heating the catalyst externally for start-up as well as during
NH3 oxidative decomposition.

Strong heat generated by a simple fundamental
physicochemical process, namely NH3 adsorption or oxidation
of the catalyst, heats the catalyst to catalytic auto-ignition
temperature and resultantly permits rapid cold-start process for
H2-production. Heterogeneous catalysis
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A B

catalyst
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Exothermic!
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Potential applications

NH3
O2
H2

NH3
O2
H2

NH3
O2

・Alkaline FC

・NH3-SOFC

Use of produced H2 as
combustion improver

・NH3 engine, turbine

Power generation by 
using produced H2

Rapid heating of SOFC 
by using generated heat

Features of the process
Rapid onset of H2
production and heat
generation.
High H2 formation rate.
No need for external
heat source and
complex procedure.

H2

H2, N2, H2O

Fuel Cell

・

・
・



H2 engine

NH3
synthesis

Transportation
H2 FC

NH3
decomposition

We envisage a low-carbon society using H2, in
which NH3 plays a role as an energy and H2 carrier!

RuO2

RuO2

RuO2

Ru

NH3 adsorption
and heat evolution

in situ NH3 desorption

γ-Al2O3

Formation of NH3 adsorption site

NH3
O2
H2
N2
H2O
acidic site

O2 passivation
at room temperature

Pre-treatment
in inert gas 
at 300 ºC

Room Temperature

> 300 ºC

Oxidative decomposition

Ru

Catalytic Cycle Requiring No External Energy

Sci. Adv. 3 (2017) e1602747.

NH3 + 0.25O2 → H2 + 0.5N2 + 0.5H2O

ChemRxiv, doi.org/10.26434/chemrxiv.7763657.v1

Oxygen Deficient Composite Oxide
(including Ba2+, Ce3+, and La3+)
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Sci. Adv. 3 (2017) e1602747.

He, 300℃ → NH3/O2/He, RT

RuO2/γ-Al2O3 exhibits high and stable activity at least for 100 h without external heat.
Ru amount was unchanged before or after long-term reactions or after the cycle tests 
(XRF).
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Influence of Ru loading on γ-Al2O3

RuO2/γ-Al2O3: Heat evolution and adsorption amounts were much higher than 
those on bare γ-Al2O3.
→ Surface of RuO2 nanoparticles serves as strong NH3-adsorption sites.

Physisorption of NH3 also contributes to the heat evolution of the catalyst.

Sci. Adv. 3 (2017) e1602747.
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Catalyst Specific surface area

(m2 gcat–1)

CO adsorbed

(μmol gcat–1)

RuO2/γ-Al2O3 156 477

RuO2/La2O3 23 23

Physicochemical property of the catalysts



Gas Hourly 

Space velocity

(L h–1 gcat–1)

Feed gas 

composition

(mL min–1)

Conversion 

(%)

H2 yield

(%)

NH3:O2:He ratio NH3 O2

31.25 75:18.8:10.4 73.89 100 45.46

62.5 150:37.5:20.8 97 100 63

125 300:75:41.6 100 100 67

Influence of SV 
(same catalyst weight) 



NH3 (g) + 0.37O2 (g) → 0.76H2 (g) + 0.5N2 (g) + 0.74H2O (g) ΔH = –135 kJ mol–1

NH3 (g) + 0.25O2 (g) → H2 (g) + 0.5N2 (g) + 0.5H2O (g) ΔH = –75 kJ mol–1

NH3 (g) + 0.09O2 (g) → 1.32H2 (g) + 0.5N2 (g) + 0.18H2O (g) ΔH = 0 kJ mol–1

NH3:O2

(molar ratio)

Feed gas composition

(mL min–1)

Maximum H2 yield 

(%)*

Conversion 

(%)

H2 yield

(%)

NH3:O2:He ratio NH3 O2

4:1.5 150:56.3:2.0 51 100 100 49

4:1 150:37.5:20.8 67 96 100 64

4:0.38 150:14.3:44.0 88 27 100 14

Influence of NH3/O2



Safety assessment of transport fuels

Material Health Flammability Flash point 
(℃) 

Hazardous 
score

NH3
3 (Deleterious 

substance 25ppm*) 1 132 3 + 1 = 4

H2
0 (Explosive range 

4-75%) 4 -187 0 + 4 = 4

Gasoline 1 (Boiling point 30-
220 ℃) 3 -43 1 + 3 = 4

*Association Advancing Occupational and Environmental Health (ACGIH )

N. J. Duijim, F. Farkert, J. L. Paulsen, Safety assessment of ammonia as a transport fuel. 
https://claverton-energy.com/

Safety measure is a very important issue for using ammonia as H2
carrier.



Properties of H2 carriers
NH3

Methyl-
cyclohexane
（C7H14）

CH3OH/
H2O

(CH3)2O/
3H2O

Liquid 
hydrogen
（H2）

Molecular mass 17.03 98.19 32.04/
(18.02)

46.07/
(54.05) 2.016

Boiling point （K） 240 374 338 249 20.3

Density （g/cm3) 0.682*1 0.769 0.792/
1.00

0.67(0.5MPa,
293K)/1.00 0.0706

H2 content
（mass%） 17.8 6.16 12.1 12.1 100

H2 volume 
density 
（kg/100L）

12.1 4.73 10.3 9.86 7.06

ΔH for releasing 
H2 （KJ/molH2）

30.6 67.5 43.8 45.6 0.899

（*1,0.1MPa,240K）

K. Aika (http://www.jst.go.jp/pdf/pc201311_aika.pdf)

・ It is liquefied at 20 ℃ with a pressure of 0.8 MPa and H2 storage
capacity is high.
・ Infrastructure for storage and transportation is well established.
・ A carbon-free H2 storage and transportation system can be constructed.

Advantages of NH3


