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Supported multicomponent catalysts

Accurate control of interaction and synergistic effect

between metal-metal, -support, and -dopant enables each reactant to

optimize reaction kinetics NOXx reduction
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NH; as H, carrier
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Key issues

Development of effective catalysts for
synthesis/decomposition of NH,



NH; as H, carrier
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Construction of a facile process
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NH; decomposition
Convention: Endothermic reaction and requires external heat
Cat.
NH, ==
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NH, — 1.5H, + 0.5N, AH= +45.4 kJ




Start-up procedure
- NH; decomposition -

AH>0 and requires external heat
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» Catalyst should be heated to 400°C by external energy and adequate time

IS required.

» Time lapse delays onset of H, production and lowers energy efficiency.



NH, oxidative decomposition (AOD)

Convention: Endothermic reaction and requires external heat

NH, ==

This research: Exothermic reaction and needs no external heat

— H, formation rate is fast

NH,
0, —

N,, H,
= 1.0

NH3 + 02502 — H2 + O5N2 + O5H20 AH<O




Rapid cold-start process for
NH, oxidative decomposition (AOD)

NH; + 0.250, — H, + 0.5N, + 0.5H,0 AH=-75 kJ/mol

No need for external heat
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Rapid cold-start process for
NH, oxidative decomposition (AOD)

NH; + 0.250, — H, + 0.5N, + 0.5H,0 AH=-75 kJ/mol

No need for external heat

N
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> Self-heating of the catalyst

Temperature (°C)
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» Heat for self-heating
1. Heat evolved by NH5 adsorption
2. Heat generated by oxidation of the reduced catalyst



Rapid cold-start process

for oxidative reforming of hydrocarbon
n'C4H10+202 — 4CO+5H2 AH — '316 kJ

oxidation

y lce bath
J HI&_ (0°C)
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Rapid cold-start process for
NH, oxidative decomposition (AOD)

NH; + 0.250, — H, + 0.5N, + 0.5H,0 AH=-75 kJ/mol

No need for external heat
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» Heat for self-heating
1. Heat evolved by NH; adsorption
2. Heat generated by oxidation of the reduced catalyst




Mechanism for triggering AOD at RT

v-Al,O5 OH OH Lewis acid site O-
| | Heating - |
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NH3 + 0. 2502 — H2 + O5N2 + 05H20
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¥ NH,
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w H — -
N, Oxidative decomposition

Jy H0

== acidic site

Formation of NH; adsorption site

» Heat evolved by NH; adsorption increases the catalyst temperature to the
catalytic auto-ignition temperature.

Sci. Adv. 3 (2017) e1602747.



Experimental

» Catalyst: 5 wt% RuO,/y-Al,O4,
5 wt% RU02/L3203

» Activity test

- Flow system

- Adiabatic condition

- Pretreatment: He, 300°C, 1 h

- Initial temperature: RT (~25 °C)
- NH;/O,/He = 4/1/0.6

- SV: 62.5 L/(h-g)

- Catalyst weight: 0.2 g

» Analysis
- GC-TCD, Q-MS

Ceramic
insulation
materials

Catalyst -
Quartz wool

a-Al,O4 balls

Quartz reactor

v

Thermocouple !']

(Inlet)




Procedure of activity tests

Electrical O | | \
heating ON 'i\ Electrical heating OFF N
|
300 |
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» He pretreatment: 300 °C

» Feed gas was supplied at RT.
» Power of the furnace was switched off during the reaction.



Activity test for RuO,/La,0,

He, 300°C — NH5/O,/He, RT
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» No products were observed.
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Activity test for RuO,/y-Al, 0O,

He, 300°C — NH5/O,/He, RT
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» Within 30 s, 1 H, production rate increased to 33 L h-' g'.
Tcatalyst bed temperature rose to 522 °C.
— AQD is triggered in a very short time without any external heat input.
» NOx were not observed during the test.

Sci. Adv. 3 (2017) e1602747.
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Rising in catalyst bed temperature
through NH,; adsorption

He, 300°C — NH,/He, RT
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Rising in catalyst bed temperature

through NH; ad

sorption

He, 300°C — NH,/He, RT

RuO,/y-Al,O4 RuO,/La,04
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» RuO,/y-Al, O,

- Heat produced through NH5 adsorption increases the catalyst-bed

temperature to catalytic auto-ignition

temperature (90°C).
Sci. Adv. 3 (2017) e1602747.



Differential calorimeter combined with a
volumetric gas-adsorption analyzer

Calvet-type heat-flux calorimeter Volumetric gas-adsorption analyzer



Role of RuO, and y-Al,O,
for NH; adsorption and heat evolution (30 °C)
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P v-Al,03
- Chemisorption on Lewis acid sites heats the catalyst.
- Physisorption of NH; contributes to the heat evolution of the catalyst.

Sci. Adv. 3 (2017) e1602747.
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Role of RuO, and y-Al,O,
for NH; adsorption and heat evolution (30 °C)
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» y-Al,O;4

- Chemisorption on Lewis acid sites heats the catalyst.

- Physisorption of NH; contributes to the heat evolution of the catalyst.
P RuO,/y-Al,O4

- Surface of RuO, particles serves as strong NH;-adsorption sites.

Sci. Adv. 3 (2017) e1602747.



Total heat of NH3; adsorption (J geat

Role of RuO, and y-Al,O,
for NH; adsorption and heat evolution (30 °C)
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NH; partial pressure for triggering tests
Multilayer physisorption
of NH3; molecules

y-Al,04

Y-Al,O4

» NH; is chemisorbed on RuO, particles and Lewis acid sites on y-Al,O; and
subsequently physisorbed as multilayer.

Sci. Adv. 3 (2017) e1602747.



Cyclic process of AOD
NH; + 0.250, — H, + 0.5N, + 0.5H,0

Catalytic Cycle Requiring No External Energy

%0 o? R
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Pre-treatm o _ | o °
in inert gas - - NH; adsorption
- and heat evolution '

at 300 °C * - v
_ > 300 °C
Formation of NH; adsorption site &

¥ NH, | © o o
@® O, Oxidative decomposition
< H, [ O, passivation }

N, at room temperature
4y H20
«= acidic site in situ NH5 desorption

Sci. Adv. 3 (2017) e1602747.



Cycle tests of AOD (RuO,/y-Al,0,)

He, 300°C — NH3/O,/He, RT
NH3 + 02502 — H2 + 05N2 + O5H20
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1st 2nd 3rd 4th 5th
Cycle

» NH,; oxidative decomposition was triggered from RT at all cycles.
Sci. Adv. 3 (2017) e1602747.




Cyclic process of AOD

NH3 + 02502 — H2 + 05N2 + O5H20

Catalytic Cycle Requiring No External Energy

9@ o RT
.9 ®
OZ/NZ\ :@ <™ NH, adsorption a ‘u"
at 100°C ™ = / v
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_ > 300 °C M
Formation of NH; adsorption site 0 -

W N, w22 o .

@® O Oxidative decomposition
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N

2
4y H20
«= acidic site in situ NH5 desorption

In preparation



Cycle tests of AOD
(RuO,/FER)

100 °C, O,/N, — NH,/O,/N,=4/1/4, RT

AT JENEEE JENEEE v v
:\5 80 -
ge) MaX|mum H, ylelcl |
SO Rl SEEEE 2 4——»————+—-
5 607 | ! !
c | | I |
® | | | |
c | | | |
.S : : ' '
& 100 °C, O,/N, O,/N, O,/N, O,/N,
g’ 0,/N, Purge Purge Purge Purge
o ! | ! |
© 204 | | | |
i (@) NH, conv. () O, conv. () H, yield
0

1 2 3
Cycle number

» O,/N, was used instead of He.

4

—A practical system using NH; and air would be developed.

In preparation



Rapid cold-start process for
NH, oxidative decomposition (AOD)

NH; + 0.250, — H, + 0.5N, + 0.5H,0 AH=-75 kJ/mol

No need for external heat

A
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» Heat for self-heating
1. Heat evolved by NH5 adsorption
2. Heat generated by oxidation of the reduced catalyst




Mechanism for triggering AOD at RT
(1wt%Ru/Ce, 5Zr, 50,)

NH3 + 02502 — H2 + 05N2 + O5H20

& P
CegsZro 50, / / 8‘9
\ Ce052r0502 ﬂCeoszro 50 N
Oxidation ¢ A,
» treatment and heat evolution -
atRT Cey, 5Z"o 502 X
Reduced catalyst
8 NH Cey 521, 502
3
® O. Oxidative decomposition
w H;
C A
Jy H20

== acidic site

» Heat evolved by catalyst oxidation increases the catalyst temperature to the
catalytic auto-ignition temperature.



Triggering AOD at RT (Ru/Ce,Zr, :0,)

H, reduction, RT — He, 300 °C — NH4/O,/He=4/1/0.5, SV= 62.5 L/(hg), RT

50 — 800
O i
= E’ 700} Inlet part
" *é 600_—
— o)
N~—" L 500'
o 30 g— [
®© Q2 400l Outlet part
< 50 N o) i Gas fpw
2 8 300} (] Os
® 3 X
E ol > 200}
L & : Catalyst
T T S T e e
Time (min) Time (min)

» Within 30 S,THZ production rate increased drastically to 34 L/(hg).
catalyst bed temperature rose to 600 °C.
— AOD is triggered in a very short time without any external heat input.



Cyclic process of AOD

NH3 + 02502 — H2 + 05N2 + O5H20

Catalytic Cycle Requiring No External Energy

%@ o T
O o
&
Ceo 5Zr0 502 / —
\ - o «—Ceg5Zr, 50
e Oxidation
H, treatment and heat evolution
Cey 5Zr0 502 X

L
at RT
_ > 300 °C
Reduced catalyst 'd /
p Cey 521, 50

¥ NH, < — 0.54T0.5VY2
@ O, Oxidative decomposition
; :2 NH; purge i
N Hio S0521050;~Ce, 521050

«= acidic site in situ reduction of catalyst



Cycle tests of AOD (Ru/Ce, :Zr, :0,)

H, reduction, RT — He, 300 °C — NH3/O5/N>=4/1/4, RT
100 —< < < < <

V'S 4 4 2 4
2
< 80f
©
[ Maximum H, yield
.~ 'SUUNURpEE VUSRS RYSSUUE | U SO Ui F oy A
T 60r ) > > > >
® I
c
2 40f
E) s tr??a_ltmen> NH; purge> NH; purge NH; purgé NHj; purge >
cC
8 201 (€9)NH;conv.: () O,conv. (Pp)H,yield

0

1st 2nd 3rd 4th oth
Cycle number

» NH; oxidative decomposition was triggered from RT at all cycles
by the heat produced by oxidation of Ru/Ce, 5Zr, s0,_, at RT.



Summary
» We present innovative process for H, production without need
for heating the catalyst externally for start-up as well as during
NH; oxidative decomposition.

»Strong heat generated by a simple fundamental
physicochemical process, namely NH; adsorption or oxidation
of the catalyst, heats the catalyst to catalytic auto-ignition
temperature and resultantly permits rapid cold-start process for

H2-productlon. Heterogeneous catalysis

Exothermic!

®+®—0®

potential energy

’
~_7
catalyst 0 catalyst
catalyst

adsorption reaction desorption

Reaction coordinate



Potential applications

Ha, Np H0

Features of the process

- Rapid onset of H,
production and heat
generation.

* High H, formation rate.

* No need for external
heat source and
complex procedure.

- NH3'SOFC

Rapid heating of SOFC
by using generated heat

\

-NH; engine, turbine

W,
~

Use of produced H, as

combustion improver

/

- Alkaline FC

Power generation by
using produced H,

~




We envisage a low-carbon society using H,, In
which NH; plays a role as an energy and H, carrier!

H, FC
NH3 Transportation NH3 =
synthesis decomposition -
—— 1
> : | Hy 1y
Iyy Iyy . H, engine

Catalytic Cycle Requiring No External Energ

NH3; + 0.250, — H, + 0.5N, + 0.5H,0
® @ . Room Temperature

o
@ ¥ 9 c®
st Dy
@ &
Pre- tre?tt \ ‘ NH; adsorption © o ‘ 9
in inert gas / and heat evolution ®

at300°C T ™ e =y, J 7 FOSEEE W dseo

> 300 °C 0 8

Formation of NH3 adsorption site /
& NH,
OX|dat|ve decomposition
@0, P
; H, O, passivation

at room temperature

W HzO

= acidic site in situ NH3 desorptlon

----- Oxygen Deficient Composﬁe Oxide
i (including Ba2*, Ce3*, and La3*)

ChemRxiv, doi.org/10.26434/chemrxiv.7763657.v1 Sci. Adv. 3 (2017) e1602747.
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Long-term activity test (RuO,/y-Al,0,)
He, 300°C — NH5/O,/He, RT

O, conversjon

100”—“—“—“—“

— NH; conversion
> 80
ke | Maximum H, yield
GJ ___________________________________________________________________________________________________________
> G0 EEE WS ks 0 Saamm  guenlie
€ H, yield
S
B 40 A
o
>
S o0 -
3 20

O _

0 20 40 60 80 100

Time on stream (h)
» RuO,/y-Al,O5 exhibits high and stable activity at least for 100 h without external heat.
»Ru amount was unchanged before or after long-term reactions or after the cycle tests

(XRF). Sci. Adv. 3 (2017) e1602747.



Influence of Ru loading on y-Al,O,

=~ -100 257, & -200
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» RuO,/y-Al,O: Heat evolution and adsorption amounts were much higher than
those on bare y-Al,Os.
— Surface of RuO, nanoparticles serves as strong NH;-adsorption sites.

» Physisorption of NH; also contributes to the heat evolution of the catalyst.

Sci. Adv. 3 (2017) e1602747.



Peak intensities (arb. unit)

NH, TPD

RUOZ/Y'A|203 -

50

100 150 200 250 300 350 400 450 500

Oven temperature (°C)



Determination of catalytic autoignition temperature
(RuO,/y-Al,0,)

He + NH3 He + NH3+02

250

2007

1507

1007

Catalyst bed temperature (°C)

50 7

' | ' | ' | '
580 600 620 640 660
Time on stream (s)



Physicochemical property of the catalysts

Catalyst Specific surface area CO adsorbed
(M? geat™") (WMol geai™")
RUOQ/Y-A|203 156 477
RUOQ/L3203 23 23

Average particle size:
1.5%x0.4 nm

0.0 0.5 1.0 1.5 20 2.5 3.0
Particle size (nm)




Influence of SV
(same catalyst weight)

Gas Hourly Feed gas Conversion H, yield
Space velocity | composition (%) (%)
(Lh="gcat™) (mL min~")

NH,:O,:He ratio NH, Oz
31.25 75:18.8:10.4 73.89 100 45.46
62.5 150:37.5:20.8 97 100 63

125 300:75:41.6 100 100 67




Influence of NH,/O,

NH3 (9) + 03702 (g O76H2 (9) + 05N2 Q) + 074H20 (9) AH = -135 kJ mol-!
NH3 (9) + 02502 () — H2 (9) + 05N2 (9) + O5H20 (g) AH = =75 kJ mol-"
NH3 (Q) + 00902 @ — 132H2 (Q) + O5N2 (Q) + 018H20 (9) AH = 0 kd mol-1

NH3:02 Feed gas composition|Maximum Hz yield | Conversion H2 yield

(molar ratio) | (mL min™") (%)* (%) (%)
NHz3:02:He ratio NHs | Oz

4:1.5 150:563:2.0 51 100 | 100 |49

4:1 150:37.5:20.8 67 96 100 |64

4:0.38 150:143:440 88 27 |100 |14




Safety assessment of transport fuels

Flammability Flash point Hazardous
(°C) score

3 (Deleterious 341=
Ha substance 25ppm*) -
H, ° (Exaflf)%\gz)range 4 -187 0+4=4
Gasoline | \Eolling point 30- 3 -43 1+3=4

220 °C)

*Association Advancing Occupational and Environmental Health (ACGIH )

» Safety measure is a very important issue for using ammonia as H,
carrier.

N. J. Duijim, F. Farkert, J. L. Paulsen, Safety assessment of ammonia as a transport fuel.
https://claverton-energy.com/



Properties of H, carriers

Methyl- Liquid
NH; | cyclohexane CI_HI3%H/ (CH33|Z|2%/ hydrogen
(C7H14) 2 2 (HZ)
32.04/ 46.07/
Molecular mass 17.03 98.19 (18.02) (54.05) 2.016
Boiling point (K) 240 374 338 249 20.3
. . 0.792/ | 0.67(0.5MPa,
Density (g/cm3) | 0.682 0.769 100 203K)/1.00 0.0706
H, content 17.8 6.16 12.1 12.1 100
(mass%)
H, volume
density 12.1 4.73 10.3 9.86 7.06
(kg/100L)
AH for releasing
H, (KJ/molH,) 30.6 67.5 43.8 45.6 0.899

» Advantages of NH, (*1,0.1MPa,240K)
[+ It is liquefied at 20 °C with a pressure of 0.8 MPa and H, storage
capacity is high.
- Infrastructure for storage and transportation is well established.

_* A carbon-free H, storage and transportation system can be constructed.
K. Aika (http://www.jst.go.jp/pdf/pc201311_aika.pdf)




