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U.S. DoE, NASA, FuelCell Energy, and Colorado School of

Mines have invested in proton-conducting ceramics
CEC Colorado Fuel Cell Center

* ARPA-E REBELS: Proton-conducting ceramic fuel cells (5 years)
ARPA-E REFUEL: NH; synthesis with protonic ceramics (3.5 yrs)
EERE HTWS: Proton-conducting ceramic electrolyzers (2 yrs)

FE NETL: CO,-to-fuels through electrochemical catalysis (2 yrs)
NASA NSTRF: Making fuel on Mars with protonic ceramics (2 yrs)

a8 REFUEL Program: FuelCell Energy and Colorado School of Mines i
Cell scale up Stack integration Stack prototyping




Proton-conducting ceramics are an emerging

material with broad energy applications
CECL onment Colorado Fuel Cell Center

Protonic-ceramic electrochemical cell for “green” ammonia synthesis
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The CSM FuelCell Energy team explores

electrochemical NH; synthesis from many perspectives G )
CEC
* Experimental efforts on electrochemical ammonia synthesis

— Neal P. Sullivan, Liangzhu Zhu, Chuancheng Duan, Ryan
O’Hayre, Max Pisciotta, Long Le, Carolina Herradon Hernandez,
Michelle Butler, Colorado School of Mines

e Catalyst characterization

— Chris Cadigan, Canan Karakaya, Robert J. Kee, Colorado School
of Mines

* Techno-economic analysis of electrochemical ammonia synthesis
— Fred Jahnke and Hossein Ghezel-Ayagh, FuelCell Energy
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The proton-conducting ceramic electrochemical cell

is the heart of our ammonia-synthesis approach
cEre

* Perovskite ceramic membrane
— BaCe(4Zro4Y.1Yby 1034 (BCZYYD)

* Composite metal — ceramic fuel electrode
— Porous Ni - BCZYYb
— Forms mechanical support for MEA

* Porous steam electrode
— BaCoy 4Fe( 4Zr,,0;.5 (BCFZY)
— Triple-conducting electrode (H*, O%, e’)
— Splits H,0 into H* and O,
* Operating conditions
— ~ 600 °C at atmospheric pressure
— Need to increase pressure and lower
temperature for NH; synthesis




FuelCell Energy has successfully scaled up proton-

conducting ceramics, targeting 1-kW_ stack L
CECL ment Colorado Fuel Cell Center
World’s largest proton-conducting ceramic cells Target stack
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A patent-pending catalyst developed by StarFire
Energy reacts N,, H, and H* to form NH,

| Je<ae<ed Earth, Energy, Environment Colorado Fuel Cell Center

* "Ru-B2CA” catalyst Packed-bed reactor
— Ruthenium catalyst

— Ba,CaAl, O support
60

=20 bar
30 - --15 bar ,&\
| 10 bar
40 -+-5 bar

N
o
|

(mmol NH; g hr)
- W
o o

NH3 Production Rate

o
|

150 350 550 750
Temperature (°C)



Colorado School of Mines has invested in a
pressurized electrochemical test stand
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We have had the most success when decoupling the

hydrogen production from the ammonia cataIySIS M
CECT

Coupled approach Decoupled approach
Electrolysis and catalysis at 600 °C Electrolysis at 600 °C
A bit hot for NH; synthesis NH; catalysis at ~ 450 °C
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The protonic-ceramic | B2CA combination shows
encouraging longer-term, “reversible” operation
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Techno-economic analysis at FuelCell Energy finds
pressures need to reach 60 bar to be cost-competitive ([

CECL Colorado Fuel Cell Center
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Cost drivers are electric power to drive water
splitting, and pure nitrogen feedstock L o

ment

Colorado Fuel Cell Center

Sensitivity analysis at 60 bar operation

uTon: Bonsity 1.7 A/ cm2 (K06 A om?
Reactor+Tl_er4rL/p° 399 °C —: 454 °C
E'eﬁt_r;c(;s}: 4.¢/KWh 6 ¢/ kWh
Maintilrlasrbi/eo 1.5% |l 1.5% ;
Capitfll-ggos/: 778 MM$ (] 1,168:MM$
-50%N/2+%8°s/: 8 ¢ / kWh _ 21 ¢ / kKWh
450 500 550 600 650

Pie chart of
projected costs

N,
o 16¢ / kg N,

o

" Capital

Power 14%
64%

5¢ [ kWh 39,

aintenance

Projected production costs =
$557 / ton NH;

NH3 production cost ($ / ton)

12



We have built a kW-capacity pressurized test stand to
explore stack performance at elevated pressure
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The CSM-FCE team is making encouraging progress

towards cost-competitive green ammonia production
| Je<ae<ed Earth, Energy, Environment
* Proton-conducting ceramics

— Efficient H, production
— Scalable devices

°* Ru - B2CA catalyst
— Good performance at
modest pressures

* Techno-economic analysis
— Encouraging cost
projections

* Going forward

— Drive H,0-electrolysis ¢7
temperature down to

NH;-catalysis condition

14



Acknowledgements

o< 3 o« o4
U.S. Department of Energy

* Advanced Research Projects Agency - Energy
Office of Energy Efficiency and Renewable Energy %
Fuel Cell Technologies Office
Office of Fossil Energy, National Energy Technology Lab NA.
U.S. National Aeronautics and Space Administration (NASA) &

This work is supported under U.S. Department of Energy Award
Number DE-AR0000808; ARPA-E REFUEL Program; Program Manager
Grigorii Soloviechik.

The information, data, or work presented herein was funded in part by the

D Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department
' A Of Energy, under Award Number DE-AR0000493. The views and opinions
Of authors expressed herein do not necessarily state or reflect those of
\ I l \ b the United States Government or any agency thereof.

15



