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Ammonia and fertilizer production
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Techno-economic Study:

Thermochemical hydrogen production LCOH: 6,7 — 13,0 €/kg [1]
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Thermochemical air separation — Project Dusol

NITROGEN FERTILISER PRODUCTION USING SOLAR ENERGY

Basic research in the DlSol project
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Thermochemical cycles for air separation
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Perovskite Materials Design

Theoretical study of > 240 perovskites Higher reduction
temperatures

More energy

Spectrum of redox enthalpies
required

harder to reduce
>

higher oxygen affinity More effective air
\ separation

lower oxygen
partial pressures
achievable
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Vieten, J., et al., Materials design of perovskite solid solutions for thermochemical applications. Energy & Environmental Science, 2019. 12(4): p. 1369-1384.
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Example: SrFeO;_s-based perovskites

Exchange some Fe by Mn =2 Higher redox enthalpy Exchange some Fe by Co = Lower redox enthalpy
(Ca,Sr)(Mn,Fe)Os3 _5, t=1.006, 6=0.20 (Ca,Sr)(Fe,Co)0O3 -5, t=1.006, 6=0.35
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ieten, J., Perovskite Materials Design for Two-Step Solar-Thermochemical Redox Cycles, 2019, PhD thesis, TU Dresden; DOI: 10.13140/RG.2.2.17964.92800
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Scaling up to 20 kW solar — reactor design
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Solar rotary kiln

 Suitable for up to 2 kg redox material

 Stainless steel crucible (1.4828)
» welded window flange and inlet-outlet pipes
» 1.4828 because of its low amount of chrome
» Temperature resistant up to 1000 °C

« Zirconia coating
* |ncrease heat and reaction resistance

» Gastight design with a quartz window

» Feedthrough flange for inlet and outlet pipe in the
back of the crucible

« Bayonet thermocouples — 5 measurement points

« Mass flow controllers at the inlet and outlet pipe

» Oxygen sensor and filter




Experiments in the solar simulator

 Demonstration of thermal resistance
« Validation of design
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Solar air separation

/ Experimental details

» Test in the solar furnace DLR KoIn-Porz
» 250 g redox particle (SrFeQO,)
« Particle size 3-4.5 mm

» Rotation speed 1-6 rpm

* 1-4 I/min synthetic air flow
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) ) With 250 g redox material:
Solar air separation - resuits Reduction: 4 | released oxygen

Oxidation: 3.6 | captured oxygen
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Solar air separation — multiple cycles

Temperature distribution Solar reduction
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Energy demand of thermochemical air separation
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How can thermochemical air separation be more efficient?

» Improve heat recuperation?
» Solid-solid heat recovery rates of > 97 % would be required for competitiveness!
(virtually impossible, realistic maximum values are < 80 %, see Felinks et al.)

Felinks, J.; Brendelberger, S.; Roeb, M.; Sattler, C.; Pitz-Paal, R.

> Combine with other teChnOlogy? Applied Thermal Engineering 2014, 73 (1), 1006-1013

» Pressure swing adsorption (PSA) is a very efficient technology for air separation,

as long as the required gas purity is not very high kS
(y)-
» Combine PSA and thermochemical air separation! E g}
. Oxygen =
Air [ > - ,Oxl‘,’g?"'d . Only a small fraction
PSA i, | PUALY limited by of the O, needs to be
:> Thermochemical | #woveves o PSA transported
. Air Separation ) .
Nitrogen, o :> Nitrogen, high purity thermochemlcally
pre-purified o
Oxygen, high purityg Vieten, J; Gubdn, D.; Lachmann, B., Bulfin, B.; Kaunzner, D., patent application

pending (file no DE 10 2019 126 114.7)
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Energy balance of combined PSA and thermochemistry vs. state of the art

Per mol of nitrogen
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Follow-up project - outlook

Investigation of the entire value chain from hydrogen, nitrogen and oxygen to the fertilizer product
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